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ABSTRACT 

This report provides an analysis and physical interpretation of the 
various mechanisms giving rise to radar clutter.   Both volume-distributed 
clutter (rain, chaff, etc.) and surface-distributed clutter (terrain, sea, etc.) 
are considered.   The statistics of the clutter radar cross sections are related 
to the statistics and properties of the particles or surfaces producing the 
echoes.   The spectral densities of clutter signals are derived in terms of the 
physical parameters of the clutter sources.  Measured results are provided, 
and examples are calculated which indicate the magnitude of the clutter 
problem for a mid-frequency (S-band) radar system. 
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FOREWORD 

This document is one of two summary reports examining the problem of 
radar clutter in an air defense system.   The study was performed at the request 
of the Advanced Sensors (Electromagnetics) Laboratory, U. S. Army Missile 
Command, Redstone Arsenal, Alabama. 

Part I, which is unclassified, is devoted to an analysis and interpretation 
of the mechanisms giving rise to radar clutter.   Two appendices relating to this 
problem are included, and each is self-contained, including references. 
RSIC-799, Part II, classified Confidential, is an examination and evaluation 
of clutter rejection techniques suitable for the application.   Timely items 
from both the classified and unclassified literature are included. 

The following sources were searched: 

Battelle Library 
RSIC holdings 
DDC and NASA tape searches 
Personal contacts 

The helpful suggestions of W. E. Rife and G. J. Falkenbach are grate- I 
fully acknowledged. 
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Section!. INTRODUCTION 

Radar clutter denotes the received signals from unwanted targets.   The 
unwanted targets of interest in this report include volume- and surface-distributed 
scattering sources.   Raindrops, snowflakes, and chaff particles are'the com- 
monly encountered types of volume clutter, while the terrain and sea represent 
the surface clutter of concern in radar system engineering.   Clutter physics is 
defined as the study of the relationship between the nature of the clutter 
scatterers and the characteristics of the radar echoes they produce.   Without 
an elementary understanding of the physical parameters of the clutter scatterers 
and their effect on the clutter echoes, the radar engineer is at a loss to assess 
the operating capability of his system under various environmental conditions. 
Furthermore, clutter physics provides a sort of necessary background to the 
successful study and implementation of clutter rejection techniques. 

The report first establishes the relationship for received power at the 
radar for three classes of targets:  isolated "point targets" (such as an 
aircraft), volume-distributed clutter sources, and surface-distributed clutter 
sources.   The latter quantities are statistical in nature, since the exact con- 
figuration of clutter scatterers is neither known nor of concern to the engineer. 
Hence it is convenient to represent the average clutier power at the receiver in 
terms of the average radar cross section of the sources within a radar resolu- 
tion cell; the size of this average radar cross section can then be compared with 
that of a typical target to obtain a direct estimate of the strength of the clutter 
and target signals at the receiver.   For volume-distributed clutter, the average 
scattering cross section per resolution cell is defined in terms of a radar cross 
section per unit volume times the volume of the resolution cell.   The average 
radar cross section for surface-distributed clutter is likewise defined in terms 
of a radar cross section per unit area times the area of the surface contained 
within the resolution cell.   Hence, it is these average radar cross sections per 
unit volume (for volume clutter) and per unit area (for surface clutter) and 
their relationship to the scatterers themselves which is of concern in this 
report. 

The report relates the radar cross section per unit volume to the number 
of volume scatterers and the characteristics of each individual scatterer.   This 
is done for both raindrops and half-wave chaff dipoles.   Both the average radar 
cross section per unit area and its variance are studied; the variance provides 
an estimate of the degree of fluctuation about the mean received power level 
one can expect for volume clutter echoes.   Theoretical predictions are compared 
with, measured values. 



A region of space filled with volume scatters will attenuate a radar wave M 
propagating through it.   While this attenuation is not of itself the same as § 
clutter, it is usually associated with this subject because the same particles are | 
responsible for both the clutter echoes and the attenuation, and both phenomena f 
degrade the performance of a radar system.   Both theoretical and experimental f 
results for radar wave attenuation through rain are given and discussed. f 

I 
The radar cross section per unit area of surface-distributed clutter is I 

analyzed.   The average value of this quantity for various types of surfaces is § 
given and interpreted physically; curves of this radar cross section are shown j 
as a function of the surface roughness parameters.   The variance of the radar J 
cross section per unit area is derived.   Both small scale and large sc Ue surface § 
roughness components are analyzed and their role in the scattering process for 
natural surfaces is explained.   Measured radar cross sections per unit area for 1 
terrain and sea surfaces are presented and compared with theoretical f 
predictions. 1 

i 

Finally, the spectra of echoes scattered from clutter sources are studied. 
In general, clutter source and/or radar motion produce two effects:  a spreading | 
of the incident signal spectrum and a Doppler frequency shift in its position.   The § 
mechanisms responsible for these clutter spectrum changes are examined.   It is 
shown how several of these spectrum-degrading effects acting simultaneously | 
combine to produce a total received clutter spectrum.   Measured data are given 
where available. j 

I 
Several theoretical results and physical interpretations given here have 

been derived by this author and have not as yet appeared in the literature. f 
Unfortunately, the scope of this reported effort is not consistent with the pre- | 
sentation of the detailed derivations.   Two analyses are included, however, as j 
appendices.   Appendix A provides a theoretical treatment of scattering from | 
volume-distributed particles; it covers both the clutter radar cross section and 
its statistics as well as the attenuation of waves propagating through the medium. f 
Appendix B interprets the radar cross section of a very rough surface expressed 
in terms of the average number of specular points times their average Gaussian 
curvatures; the derivation of these quantities is presented.   These appendices 
were written earlier in the year for publication in the open literature.   They are t 
included here because of their direct application to the area of clutter physics. 
They are as such self-contained articles, having their own references and 
figures. \ 



Section II. RADAR RECEPTION OF TARGET AND CLUTTER SIGNAL5 

Clutter is defined to be radar reflections from unwanted targets.   These 
unwanted targets, or clutter sources, are usually distributed randomly over the 
area to be searched by the radar;* this "range-distributed" clutter is the only 
type to be considered here.   In most cases the radar signal reflected from a 
single clutter source is small compared to the signal from an aircraft target. 
However, the total signal from many such clutter sources seen by the radar 
simultaneously may be larger than that of the aircraft.   In this case the target 
will not be visible above the clutter return if one merely observes signal 
intensity at the receiver.   It will be the purpose of this section to examine 
quantitatively the intensity of the clutter and target signals at the receiver 
and their relationships to the scattering characteristics.   Later sections 
will be concerned with the reflecting and spectral characteristics of the clutter. 

A further breakdown of clutter into two categories is necessary to under- 
stand its echo characteristics.   Volume-distributed clutter refers to clutter 
sources which are randomly spaced in three dimensions.   Examples of such 
volume-distributed clutter sources include such natural phenomena as raindrops, 
snowflakes, flocks of birds, and swarming insects, as well as artificial or man- 
made obstacles such as chaff particles.   These sources, though having random 
positions, are said to be uniformly distributed over space meaning that each 
volume increment in a local region of space is as likely to have the same number 
of sources as each other volume increment in the same local region.   Surface- 
distributed clutter refers to clutter sources which are randomly spaced over 
two dimensions.   Examples include trees scattered over the ground, specularly 
oriented reflection regions of sea surface waves, buildings in a city, and heads 
of grain in a wheat field. 

Clutter physics is a term used to describe the study of the origin of 
clutter echoes and the relationships between clutter echo characteristics and 

f the clutter source characteristics.   When the class of targets to be considered 
is aircraft, as it is in this report, one can immediately set down some of the 

I properties of the clutter sources which will hopefully give their echoes different 
characteristics than target echoes.   One of these properties is the distributed 

I nature of the two types of clutter sources, as discussed in the above paragraphs. 
I The echo from each clutter source, as mentioned above, is in this case smaller 

than that of the target.   Also, the target is always in motion with respect to the 

* Some types of isolated, unwanted targets are occasionally termed 
clutter.   For example, a water tower located a mile away from an air search 
radar may produce a large unwanted echo.   Such an isolated target is not con- 
sidered clutter here, and techniques used to mask such single objects usually 
differ from those used for range-distributed clutter. 



clutter sources.   For air defense radar systems, velocity differential is usually 
the most important characteristic as .far as rejecting the clutter echoes; this 
relative motion produces a Doppler frequency difference between clutter echoes 
and target echoes.   Target body shape is different from that of clutter sources; 
hence one can expect that the polarization properties of their scattered radar 
waves will differ.   Furthermore, difference in size between clutter sources and 
target should mean that the frequency dependence of clutter echo strengths will 
differ; the average echo intensity of an aircraft is nearly constant over most of 
the useful radar spectrum as a function of frequency, while that of clutter will 
be shown to increase with frequency. 

The relationship for the power received by a radar antenna from a target 
complex at a range R   is derived in many standard radar textbooks.1-4 They 

are repeated and interpreted here for three classes of targets.   For simplicity, 
only backscattering is considered here. 

1. Aircraft Target at Rangt Rj 

If the radar beam is pointed directly at the target, the power 
received is 

(4TT)
2
R

2 
(1) 

In this equation, P_ is the transmitted power, G   is the maximum gain of the 

transmitting antenna, cr   is the target radar cross section, G   is the maximum 

gain of the receiving antenna (G   = G   if the same antenna is used for transmit 

and receive), and X is the r-idar wavelength.   The quantity in the first set of 
brackets gives the transmitted power density at the target.  The radar cross 
section in the second set of brackets is the area of a fictitious body which 
scatters the same amount of power back toward the radar as the aircraft, but 
also scatters this same amount in all other directions.   The quantity in the 
third set of brackets then accounts for the propagation of this backscattered 
energy back to the radar and its reception.   One sees from this equation the 
familiar dependence of received power on the inverse fourth power of radar 
range. 



2.  Volume - Distributed Clutter Sources at Range Rj 

I 

At this point it is convenient to define the radar geometry ( Figure 1) 
Since only backscattering is considered, the depth of the range resolution cell* 

CT 
is — , where T is the time duration of the radar pulse and c is the velocity of 

light.   The quantities A0 and A<p are the half-power beamwidths of the main 
antenna beam in elevation and azimuth respectively.   (While the radar geometry 
shown in Figure 1 may not be appropriate to all situations, it is probably the 
most common one typical of air and surface search radars.   Furthermore, it 

RADAR RESOLUTION CELL 

(o) TOP VIEW 

RADAR RESOLUTION CELL 

I 
tr 
1 

(-RADAR ANTENNA 

Ae 

77771777777 

(b) SIDE VIEW 

FIGURE 1.   RADAR ANTENNA AND PROPAGATION GEOMETRY 
FOR GROUND-BASED SYSTEM 

'•'The range resolution cell is the depth in range within which reflecting 
targets can produce echoes which all are received simultaneously. For back- 
scattering it is exactly equal to one-half of the spatial pulse length CT . 



illustrates well the effect of both volume- and surface-distributed clutter.   If 
the clutter problem is understood for this geometry, other radar geometries 
can be easily handled.) 

Assume now that the resolution cell at range R   is filled with volume- 

distributed clutter sources such as rain.   Then the average power received is 

G\* 
(2) 

(47r)2R2
T/ 

All the quantities in this equation have the same interpretation as in Eq. (1) 

except the quantity in the second set of brackets.   This quantity or V is the 
average total backscattering cross section of all the clutter source particles 

a 

« 
1 

within the resolution cell.   Since this quantity is shown later to be merely the 
sum of the scattering cross sections of each particle, it is directly proportional 
to the number of such particles.   Assuming the particles are randomly but 
uniformly distributed, their total number is proportional to their average 
density times the volume of space inside the resolution cell.   Hence it is con- 

venient to define the total average cross section CT V as the average back- I 
scattering cross section per unit volume (with dimensions of inverse length) I 
times the volume of space containing the particles observed simultaneously by i 
the radar, i.e., the volume of the radar resolution cell. | 

I 
c ''' 

It will be the task of a later section to study the quantity <r , the average 
volume-distributed clutter cross section per unit volume.   That quantity is 
usually a con; taut, independent of range.   However, it is important to give the 
volume V of the resolution cell to see how the clutter power depends upon the 
radar parameters and range.   For the radar geometry of Figure 1, the volume 
V is approximately 

T-('"T-TT)(T)-       16       ■ ,3> ? 

where the first expression in brackets is the area of the half-ellipse across 

the beam face with semi-major and semi-minor axes—5— and —-— .   The 

second set of brackets contains the depth of the cell.   Thus one can see that as 
the resolution cell grows in size proportional to R|L the apparent total radar 

' c 
cross section of this clutter a V, grows with the square of the range.   This is 

i 

I 6 i 



in contrast with the radar cross section of an aircraft target, as seen in Eq. (1), 
which is independent of range.   Hence one can expect the rain clutter echo, 
while possibly not a problem at smaller ranges, can definitely become a problem 
at larger ranges where it will eventually exceed the echo strength from a target. 

3.  Surface - Distributed Clutter at Range re- 

liefer ring again to Figure 1(b), assume that the ground at 
the bottom of the resolution cell produces a surface-distributed clutter echo. 
Then the average received signal power arising from the surface-distributed 
clutter sources contained within this resolution cell is given by 

V2 

(4ir)2R* 
(4) 

All quantities are the same as defined previously for Eq. (1) except the expres- 

sion inside the second set of brackets.   This quantity a A is the total average 
radar backscattering cross section for the surface-distributed clutter contained 
in this resolution cell.   Since it was assumed that the clutter-producing sources 
are randomly but uniformly distributed over the ground surface, this total 
radar cross section is proportional to the surface area A contained inside the 
resolution cell.   For this reason, the quantity is usually written as the product 

of a , the average backscattering cross section per unit surface area of the 
ground (a constant dependent only on the ground-scattering properties) and A, 
the surface area within which the ground clutter is seen at a given time at the 
receiver. 

The quantity A, being proportional to the surface area inside the resolu- 
tion cell, is a function only of the radar parameters and geometry.   For the 
geometry shown in Figure 1, it is given by 

A .  (V») (*) . 
R   CT^W? 

(5) 

The first expression in brackets is the arc length in azimuth across the main 
beam, and the second set of brackets contains the depth of the resolution cell. 
As can be seen, the total radar cross section of the surface clutter increases 
linearly with radar range R   since the area A contributing to surface clutter 

increases with range.   While this increase is not as rapid as that with volume- 
distributed clutter, nonetheless it does exist while the radar cross section of 
the aircraft is a constant with range. 



*In practice, the null never completely goes to zero because of (1) less 
than perfect reflection at the ground surface, and (2) the antenna boresight is 

8 

■5 

One fact stands out clearly from consideration of dietributed clutter up to 
this point:  Reduction of the size of the resolution cell (with the corresponding 
reduction in resolution cell volume V and subtended surface area A) will reduce 
the power received due to clutter but will not affect the power received from an | 
aircraft target.   The resolution cell size should not be smaller than the aircraft |    \ 
dimensions, however, for then the target signal from the resolution cell begins | 
to decrease.   While reduction of the resolution cell size definitely helps reduce |    j 
received clutter power, there are disadvantages which can offset the advantages J    j 
gained for certain situations.   One way of reducing the resolution cell size is to I    j 
reduce antenna beamwidth.   For a given frequency, this means increasing the 
antenna size and weight.   This increased antenna size and weight, while reducing 
clutter and increasing antenna gains G   and G    (and hence maximum radar 

T R 
range), are of themselves disadvantages which necessitate greater mechanical 
complexity and cost.   Furthermore, decreased antenna beamwidth in a search 
radar means a longer time to scan a given volume of space; this scan time is 
usually a limiting factor to reducing beam widths, even in phased array radars. 

The remaining recourse in reducing resolution cell size is to reduce the 
CT 

depth — .   This is done by reducing the effective pulse width T.   While present 
m 

CT 
circuitry permits reduction of T to the minimum (i.e., where — is the length 

of the airplane), most radar transmitters are limited in peak power; reduction 
in pulse width r thus results in a corresponding decrease in the total energy in 
the signal.   A well designed receiver has a signal-to-noise ratio which increases 
not with peak signal power but with the energy in the signal.   Hence reduction of 
T to reduce range resolution cell size results in a decrease in signal-to-noise 
ratio.   However, modern pulse compression techniques permit one to reduce the 
effective resolution cell size without sacrificing signal-to-noise ratio.   This is 
discussed in Part II under matched filtering as a means of effectively reducing 
clutter by reducing the effective cell size. 

A further point should be noted concerning surface clutter.   In certain 
cases nearby ground or sea clutter can be reduced in ground-based search radars 
by using horizontal polarization.   At lower radar frequencies (L-band and lower), 
the ground is a good reflector, especially near grazing incidence; the ground- 
reflected wave for horizontal polarization, however, is shifted 130 deg in phase 
upon reflection.   Hence an antenna mounted several feet above the surface and 
pointed near the horizontal will produce a composite pattern which is a result of 
of the interaction of the direct rays with the ground-reflected rays.   For hori- 
zontal polarization, this composite pattern has a null in the horizontal direction.* 

3 i 



Hence, surface clutter sources which lie along the horizontal are not seen by 
by the radar.   This effect is treated by Watters and Nathanson,5 who show 
that the first pattern maximum up from the horizontal occurs at elevation angle 

of = sin"1 f—). where \ is wavelength and h is the height of the radar antenna 

above the surface.   For example, an L-band (f   = 1000 MHz) radar antenna 

mounted about 18 ft off the ground has a null along the horizontal and its first 
maximum at 0.7 deg from the horizontal.   While the technique is useful for 
reducing ground clutter, the resulting elevation pattern consisting of many 
maxima and minima (at about 0.7 deg apart for the above example) has "blind" 
angles through which an approaching aircraft must fly and at which it will be 
seen poorly, if at all.   Furtheremore, an enemy aircraft hugging the horizon 
will be rejected to much the same extent as the surface clutter.   For the above 
example, an aircraft flying at 500 ft altitude will not be visible until it is at a 
range of about 10 to 15 mi.   Nonetheless, the clutter reduction advantages out- 
weigh the disadvantages in many situations.* 

As a practical example of the effects of clutter on a typical ground-based 
I S-band [f   = 3000 MHz] search radar, the radar cross section of various types 

1 of clutter in a resolution cell as a function of radar range were calculated5 and 
| shown in Figure 2.   The antenna polarization is horizontal, the beam width is 
I 2 by 2 deg, and the pulse width is 1 ^sec.   Clearly, an aircraft target at a given 
1 range should have a radar cross section considerably above that of the clutter. 

The left ordinate is calibrated in terms of required target cross section to give 
I 13 dB of signal-to-clutter ratio; this 13 dB figure is usually considered desirable 
| for reliable detection.  Receiver thermal noise is also shown along with light 
| rain, moderate rain, chaff, sea clutter, and open land.  As can be seen, land 
f clutter is the most serious at short ranges for this situation. 

usually never directed exactly along the horizontal.   The pattern minimum 
along the horizontal, however, may tic quite deep, lying as much as 20 to 30 dB 
below the pattern maxima. 

* "Clutter fences" have much the same effect as the technique described 
here.   They are merely metal fences built around the radar site used to shield 
the antenna from strong nearby ground clutter. 
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Section III. RADAR CROSS SECTION OF VOLUME - DISTRIBUTED CLUTTER 

1.  Radar Cross Section of Single Raindrop 

It is necessary to know the scattering cross section of a single 
average raindrop of radius a in order to compute the effect of many such 
particles reflecting together.   For all practical purposes, the raindrop may be 
assumed spherical with a radius a significantly less than wavelength; this is 
usually valid even up through K -band (X = 8 mm), since raindrop radius rarely 

3. 

exceeds 1 to 2 mm.   Hence the backscattering cross section of a single raindrop 
is that of a dielectric sphere with refractive index m and radius a in the 
Rayleigh (low frequency) region.   This is (Appendix A): 

a    = 4ffa2 m2 - 1 

m2 + 2 <•■) 
k a '   , (6) 

2ir 
where k   = — •   It should be noted that the refractive index m of fresh rain 

o      X 
water is a complicated function of frequency throughout the microwave region; 
usually only empirical relationships are available for this frequency dependence. 
The most significant variation of a    with frequency, however, is contained in 

the factor k4  , which shows that the radar power backscattered by a single rain- 
o 

drop increases with the fourth power of frequency.   This rapid increase in rain 
clutter signal with increasing frequency is probably the most serious limitation 
on the use of high frequencies for long range radars. 

2.  Radar Cross Section of Single Half-Wave Chaff Dipole 

An effective chaff cloud usually consists of thin, conducting half-wave 
dipoles, where the enemy's operating wavelength is known ahead of time.   A 
combination of theoretical analyses and experimental measurements have shown 
(Appendix A) that the cross section for such a dipole optimally oriented (i.e., 
oriented along the direction of the E-field vector of the radar wave) is 

an = 0.75X2  . (7) 
D 

In the more common situation, however, the dipoles are randomly oriented with 
respect to the E-field.   In this case, the best that can be used is a radar cross 
section averaged over all equally likely orientations-   This is 

a    = 0.17X2  . (8) 
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In general the radar cross section of a chaff dipole cut to be one-half wavelength 
is considerably greater than that of a raindrop.   This dipole represents the 
particle shape offering maximum radar cross section per unit weight of 
material. 

3. Radar Cross Section of Single Snowflake 

The problem of finding a simple scattering model for a snowflake is 
considerably more complicated than that for a raindrop.   The snowflake is 
neither spherical nor solid.   Its structure, consisting mainly of ice particles 
and air, varies widely with weather conditions.   While ice itself has a dielectric 
constant only about one-fifth that of water, the radar cross section of some 
snowflakes is substantially greater than that of raindrops.   This is undoubtedly 
because the radar cross section in the low-frequency and resonance regions is 
much more dependent on the overall size than en the dielectric constant or 
packing density of the ice; large snowflakes are considerably larger than rain- 
drops, and hence the large radar cross section.   Because of the wide variety of 
snowflake formations, it seems fruitless to give a mathematical model which 
can be expected to be at all accurate. 

4. Average Rodar Cross Section per Unit Volume 

Paragraphs 1 and 2 above have given expressions for the radar 
scattering cross sections of individual volume-distributed clutter sources, 
namely, that of a raindrop and that of a chaff dipole.   The average incoherent 
radar cross section of the entire complex of many such single clutter sources 
existing together in a given volume is derived in Appendix A.   The approxima- 
tions under which the theory is valid are stated there.   In particular, it is 
shown that the average radar cross section of the complex is merely the 
average number of particles times the radar cross section per particle.   This is 
valid when distance between particles is a random variable and thus any phase 
shift between 0 and 2ir due to these path length distances is equally likely.   This 
assumption is usually valid for rain showers and nearly always valid for chaff 
clouds.   Under this assumption, one merely adds the scattered power, or radar 
cross section, from each individual particle, and hence the term "incoherent" 
scattering cross section. 

Define N as the total number of clutter sources in a particle cloud of 
N volume V.   Then the average number of particles per unit volume is p = ~; . 

In this case, the average cross section per unit volume is 

c     N o   - rT<o"> = p <o>  , (9) 
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where «r> is the average value of the radar cross section of an individual 
particle.   For rain, «r> is the same as a    given in Eq. (6), where an average 

R 
raindrop radius is used.   For randomly oriented half-wave chaff dipoles, «T > 
is the same as a    given in Eq. (8). 

As an example, consider a moderate rainstorm with particle density 
p <* 100/m3; the typical drop radius from Figure A-2 of Appendix A is a * 1 mm. 
At X-band (\ = 3.21 cm), the value computed from the Eq. (6) and (9) for 

a   (in mym3) is about -58 dB.   This compares favorably with experimentally 
observed values to be given later. 

As mentioned previously, only the incoherent scattering cross sections 
are considered here, even though coherent scattering is treated in Appendix A. 
However, it can be shown that the coherent backscattering cross section of 
typical sized rainstorms and chaff clouds is so small throughout the microwave 
region that only the incoherent backscattered power need be considered. 

5.  Vorionct of Rodor Cross Section per Unit Volume 

I The average radar cross section per unit volume is given in the 
preceding sections.   If one were to measure the average received power from 

f volume clutter, the average reading would be a true measure of this quantity 
c 

f <r .   If the radar output power indicator were sufficiently fast, one would see a 
I fluctuation about the average value.   It is desirable to have an estimate of this 
I fluctuation in order to know how much any given reading is likely to deviate 
I from the average. 

It can be shown that the variance (defined as the average of the cross 
section per unit volume squared minus the square of the average cross section 
per unit volume) has a definite relationship to this fluctuation.   In fact, the 
Chebyshev inequality, which applies to any general probability distribution, 
states that the difference between the instantaneous fluctuating cross section 
and its average value exceeds five times the standard deviation (the standard 

I deviation is defined as the square root of the variance) less than — < or 4 per- 
£0 

cent) of the time.   Hence, a knowledge of the variance of the radar cross sec- 
tion per unit volume gives a good idea of how wildly the instantaneous value is 
likely to fluctuate about its average. 



The variance for p particles per unit volume is given in Appendix A, 

s found to bt 
unit volume, i.e., 

Q 
and it is found to be exactly the square of a , the average cross section per 

Var (ff/vol) = l<M   = [p<ff>l    . (10) 

Hence, one can expect to see instantaneous fluctuations in volume- 
distributed clutter pcwer which are as great as the average power itself.   It is 
a common misconception that the more clutter particles one observes simulta- 
neously, the less the instantaneous cross section deviates from its average 
value; such is not true.   It may be true that a radar system time constant in 
certain situations is so large that instantaneous fluctuations about the average 
are smoothed, but this is only due to the inability of the radar to follow the 
instantaneous swings in clutter power. 

6.   Probability Density of Radar Cross Section per Unit Volume 

It is relatively easy to derive the probability density function of the 
radar cross section per unit volume.   From this probability density function, 
all higher moments can be derived.   The probability density is derived in 
Appendix A.   It is shown there that the total received voltage from N signals 
arising from N clutter sources becomes a Gaussian variable as N becomes 
sufficiently large.   This follows the well known "Central Limit Theorem" of 
statistics.   (Usually the approximation is valid for N > 10.)   Then the prob- 
ability density function p(cr) for the radar cross section per unit volume cr is 
exponential, i.e., 

P(<r) = ~e  ü    , (11) c 
cr 

for 0 < <r s °° , where a  is the average radar cross section per unit volume 
as defined in Eq. (9). 

7. Measured Values for Average Radar Cross Secfion per Unit 
Volume for Rain Clutter 

In preceding sections an attempt was made to physically interpret 

<j  and the variance of this quantity in terms of the individual scattering 
particles and their density.   This was done to gain an understanding as to what 
causes the clutter and what physical parameters affect its value.   In this 

14 



section, measured values for <x   are given in Table I for various frequencies 
and at various rain rates.5 Also given is the probability, or relative amount 
of the time, that such a rain rate occurs in Washington, D. C., so that one 
can get an idea of how often a radar may have to deal with such rain clutter. 

15 
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Section IV. ATTENUATION OF RADAR WAVES DUE TO RAIN 

I.  Theoretical Interpretation 

While the attenuation of radar waves passing through volume- 
distributed particles such as raindrops is not exactly a clutter problem, it is 
a propagation problem confronting the radar designer which is a result of the 
presence of clutter sources.   A coherent radar wave propagating through a 
region containing many scattering particles experiences two effects:   its phase 
is shifted by the presence of the particles, and it is attenuated in amplitude by 
the particles.   The first effect is usually of no concern to the radar engineer 
while the latter effect is of great concern.   Appendix A treats this problem by 
two techniques.   One employs a multiple scattering theory and is quite precise 
in its formulation, while the other, simpler analysis is based upon energy 
considerations. 

The attenuation of radar waves is due to two phenomena:   Energy is 
removed from the incident wave by absorption by the particles and converted 
to heat if the particle material is lossy, and energy is removed from the 
incident wave by the particles and incoherently scattered in other directions. 

I For small particles compared to wavelength, only the first mechanism is 
important, while the second mechanism dominates when the particles are 
large compared to wavelength.   Raindrops are essentially small in size com- 
pared to wavelength up through X-band and possibly even up to K -band.   Under 

these conditions, the following approximation for the power attenuation coef- 
ficient a (derived in Appendix A) is valid: 

a = (4.343) 47rpa3k   I   (m   " 1){dB/m)   , (12) 
1 °   m\«,2 m' + 2, 

where p is the particle density (number per m3), a is the average particle 
2TT 

radius, k   = —- , m is the complex refractive index of the particle material, 

| and Im [x] means the imaginary part of x.   As can be seen, the attenuation 
I in the low frequency limit is zero unless the refractive index m is complex 
| (representing a lossy material).   The quantity a given above is the one-way 
f attenuation of radar waves and must be multiplied by two to give the round-trip 
f attenuation for backscattering. 
f 

An example is given in Appendix A.   At \ = 3.21 cm (f   = 9.35 GHz or 

I X-band), the measured refractive index of rainwatei is m = 7.14 + i2.89 at 0"C. 
I Assuming an average drop radius a of 1 mm and a density p of 100/m3 
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(typical of a moderate rain shower), one arrives at an attenuation of \ 
0.0652 dB/n. mi. (one-way) or 0.1304 dB/n. mi. (round-trip).   This compares 
to a fair degree with measured results to be given below. ! 

I 
\ 

2.  Measured Rainfall Attenuation ot Radar Waves 1 

The first extensive set of measurements of rain attenuation was 
made by Medhurst.6 A mean value of his observations is plotted in Figure 3 
as a function of frequency.   The ordinate gives the two-way attenuation per 
rainfall rate (dB/n. mi per mm/hr rainfall rate).   To use the curve, one 
multiplies the ordinate value by the rainfall rate to get the round-trip attenua- 
tion in dB/n. mi.   Rainfall rates typical of different types of showers can be 
found in Table I.   Nathanson5 used later measurements to modify the Medhurst's 
curve; his result is shown as the dashed curve.   His curve is believed to be 
more accurate for rainfall rates less than 4 mm/hr.   The curves are accurate 
to no closer than 3 dB (a factor of 2). 

It can be seen from the curves that attenuation in heavy rain can become 
a serious problem at frequencies of X-band and higher over ranges of tens of 
nautical miles.   It was also shown previously that the received rain clutter 
intensity increases sharply above these frequencies.   Hence, these two factors 
tend to limit the frequencies used for long-range search radars to C-band or 
lower. 
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0 
= 4ffkJ) cos4 B{ lo l*W, J-2k   sin B , Oj   , (13) 

where a is a function of the surface materials and polarization states; it will be 
given below for the vertical and horizontal states.   The quantity W,(p, q) provides 
the interpretation of the scattering process; it is the spectral density of the sur- 
face roughness height and is defined in terms of the surface height correlation 
function, <Ux, y) C(x + Ax, y + Ay) > = h2R, (Ax, Ay) as follows: 

, 00 00 

W,(p,q) - — £„  J^RifAx, Ayje"1*3* " 1Ayqd<Ax) d(Ay)   ,    (14) 

Section V. RADAR CROSS SECTION OF SURFACE-DISTRIBUTED CLUTTER 

1. Slightly Rough Surface: Average Radar 
Cross Section per Unit Area 

One of the most general analyses of rough surface scattering treats 
the surface height itself as a random variable.   A recent report by Barrick and | 
Peake7 presents the analysis.   The term "slightly rough" refers to a surface 
whose height deviation about a mean surface is small compared to a wavelength. 
Hence it applies to any rough surface in the low frequency limit.   In practice, I 
the slightly rough surface model accounts for HF and possible VHF scatter from 
the sea surface and some local terrain surfaces (whose roughness does not § 
exceed a few feet). I 

I 
The analysis and mathematical details are given by Barrick and Peake,r f 

only the results and their interpretation will be presented here.   Only back- J 
scattering is considered in this report for the sake of brevity and simplicity. 
The mean surface is planar and the angle of incidence 9. is measured from the 

i 
mean normal, or vertical, to the surface.   The backscattered power is termed 
incoherent because the phase angle of the scattered field varies randomly 
between 0 and 2* rad from one surface to another in an ensemble.   This is in 
contrast to the reflected fields, which are coherent; these reflected fields- exist 
at and near the specular direction and are proportional to the Fresnel reflection 
coefficients.   For backscattering, one expects a strong coherent reflection 
(compared to the incoherent scatter) around normal incidence.   However, in 
most situations involving surface clutter, the radar antenna rarely views the 
surface from directly overhead, and hence one need consider only the incoherent 
backscattering cross section. 

For backscatter, the incoherent average radar cross section per unit 

surface area, ct ,7 is given by 
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where t,(x, y) is the random variable representing the rough surface height 
above the x, y plane.   The x-direction is taken here to be along the plane of 
incidence while the y-direction is perpendicular to it; the x,y plane is the mean 
plane of the rough surface.   The quantity h2 is the mean square surface height 
and Ri(Ax, Ay) is the surface height correlation coefficient for two surface 
points separated by Ax, Ay.   Hence, Eq. (13) shows that the only roughness 
spectral frequencies which produce backscatter are those with radian wave 
numbers p = -2k   sin 9. and q = 0.   Near grazing incidence, for example, 

where sin 9. — 1, it is roughness frequencies near 2k rad/m  which are 

responsible for backscatter. 

The quantities a     and a.. , proportional to scattering matrix elements,r 

are w hh 

a 
hh 

"r"1 hi sin' 9, + e (i 
l       r r 

(ß   cos 9, + /T"jü   - sin2 9, V 
I  r i    N r r i I 

Ta \l 

(er
co8öi + 7e/r"sln y 

(15) 

for a surface made up of a homogeneous material having relative permeability 
[vity ß  and e 

these become 

and permittivity //  and e .   For a highly reflecting or conducting surface 

M. 
1 + sin2 9 

tt..  =1,    a hh w 
cos2 6 

(16) 

i 

From the above equations, it can be seen that backscattered power near grazing 
incidence is always greater for the vertical polarization states than for the 
horizontal states.   This has been confirmed experimentally also, as will be 
seen later. 

Equation (13) for a 
correct to the first order 

as obtained by a perturbation technique and is 
"    As such it represents a true low frequency 

r   was oi 

solution and exhibits the familiar fourth power of frequency dependency shown 
by power scattered from small volume-clutter particles.   If the roughness 
height is not small so that k h is not small compared to unity, then higher order 
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2.  Very Rough Surface: Averoge Radar 
Cross Section per Unit Area 

Like the slightly rough surface, the roughness height here is also 
treated as a random variable.   However, the other frequency limit defines a 
very rough" surface, i.e., the roughness height is large in terms of wavelength, 

or (k hV »1.   In this limit, any of the optics techniques are available to 

predict the average backscattering cross section, and they all give the same 
solution if the analysis is performed correctly.   A review of these various 
optics approaches is given by Barrick and Peake.T One of these approaches, 
developed by this author, is presented here as Appendix B.   This approach is 
termed the specular point theory. 

The specular point theory (Appendix B) has as its basis the simple 
Interpretation that the backscattered power is proportional to the number of 
surface points with surface slopes such that they can specularly reflect into 
the backscattering direction.   These surface elements in this case must have 
normals which point in the incidence (and scattering direction).   In addition, 
the backscattered power is proportional to the average radii of curvature at 

22 

terms omitted in the solution here become important.   Neglecti' g higher order ' 
terms, no depolarization for backscattering takes place (i.e., a . and a     are 

zero); if higher order terms are large enough to be included, then depolarization 
does occur in the form of non-zero a , and a,   ; such higher order terms are 

vh          hv | 
complicated and have been derived by Valenzuela.8 | 

As an example, consider a Gaussian surface height correlation coefficient, | 
R^Ax.Ay)  « -exp[(Ax2 + Ay2)/?2], where t is termed the correlation length. | 
Then the roughness spectrum to be used in Eq. (13) becomes I 

I 
W (-2k   cos 0., 0J = — exp |-k2?2 sin2 9. J .                    (17) 1 

\    °          *     /       *           \   °             V I 
Curves plotted from this function for the vertical and horizontal polarization f 
states versus incidence angle are shown in Figure 4 for k t = 1.0.   The curves 1 

are normalized to , in dB.   The parameter which changes between curves I 
k2h2 | 

o | 
is the dielectric constant of the surface material, which varies from infinity to .1 

i s 
1— .   Other curves of this type for different parameter values are given by ) 

this author.9 

i 

h 
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these specular points.   While this theory agrees with simple geometrical optics 
predictions, it can also be derived rigorously starting from a physical optics 
integral.10 

As derived in Appendix B, the average backscattering cross section per 

unit area a   for a two-dimensionally rough surface with incidence angle f>. 

(measured the vertical, or z-axis) and with the incidence plane taken to be the 
x.z plane (same geometry as for the slightly rough surface) is 
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'(tanflj, 0}   , 

■A 

a   = 7rsec4fl. IR(O) !z Pltanö,, 0)   , (18) 

where R( 0) is the Fresnel reflection coefficient for the surface at normal 

V r     v  r incidence, i.e., it is—j= =—for a homogeneous surface or unity for a 
vfr'    v r f       > 

perfectly conducting or reflecting surface.     The quantity P It ,t,   ) is the 

probability density function for the surface slopes C   and £ , in the x- and y- 

directions.   Hence the average radar cross section is directly proportional to 
the probability that the surface will have its x-slope oriented specularly, i.e., 
with I,   = tan 0,. x i 

As examples, consider Gaussian and exponential surface slope probability 
functions, i.e., 

PE(&...;..) - —■ exp I - Ji(rl + i;: \/s21 , f is) 

where s* = <l}> + < £J> is the total mean square slope of the surface at any 
y 

point.   Here the surface roughness is assumed Isotropie so that <&*> * <t}>, x y 
i.e., the slope statistics along the x-direction are the same as along the 
y-direction. *   Then the average radar cross sections for these two surface 
slope models are obtained from Eq. (18) and (19). 

sec4 6 / v 
a° * * i R< 0) I' exp (tan1 fl^8*) (20> 

* This is a simplification which may not be entirely realistic for the sea 
surface, which often has waves moving in preferred directions.   Nonisotropic 
surfaces can be handled easily with the above equations by permitting the sur- «I 
face slopes t,  and r,   to be correlated with each other. h 

x       y I 

I 
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for the Gaussian slope model, and 

3 sec4 6 o a   = 
s2 

-IR(0) fiexpNGtanoM (21) 

for the exponential slope model.   Curves of these radar cross sections 
o 

normalized as , are shown in Figure 5 as a function of incidence angle 
!R(0) I2 

9..   The parameter which varies between curves is the rms surface slope s. 

Very smooth surfaces, i.e.,  s small, scatter most of the energy near the 
specular direction, i.e.,  0=0, since the probability is low that the specular 

point surface slope could be very large.   In general, the curves show that the 
backscattered power falls off much more rapidly near grazing than for the 
slightly rough surface, even when the rms slope s is fairly large. 

Another point to be noted is that no polarization dependence or depolari- 
zation is obtained for backscatter for the very rough surface.   This is because 
backscattering according to these theories comes only from surface facets which 
are normal to the direction of incidence, as from small mirrors, and hence the 
same polarization is reflected as transmitted. 

3.  Composite Surfocts: Avtruge Radcr 
Cross Stetion ptr Unit Arta 

In nature, very few surfaces are strictly very rough.   Usually a 
suriacfc which h*»« a roughness scale considerably larger than wavelength also 
has smaller roughness scale superimposed over it, and a portion of this small 
roughness falls in the "slightly rough" category discussed previously.   As an 
example, consider regions with gently sloping hills and valleys on the earth's 
surface; these comprise the "very rough" scale at, say, S-band frequencies. 
On top of this are found rocks, pebbles, grass, and other slight roughness 
scale features.   Or, for example, the sea surface is made up of the large 
"swell" waves, which are the very rough scale at S-band, while the tiny ripples 
or "capillary" waves produce the slight roughness. 

In general, surfaces which have a very rough scale can be said to 
possess three different roughness scales: a very rough scale, an intermediate 
scale (i.e., wavelength and surface height are of the same order of magnitude), 
and a slightly rough scale.   The first and the last scales can be handled 
theoretically, and the results h.ive already been presented here.   The inter- 
mediate scale cannot be treated analytically, unfortunately, because neither 
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the high frequency optics techniques nor the low frequency perturbation techniques 
are strictly valid for this region.   The best one can hope to do is qualitatively 
interpolate between the low frequency, slightly rough solutions and the high fre- 
quency, very rough solutions. 

The mathematical treatment of composite surfaces having slightly rough, 
very rough, and possibly intermediate roughness scales, is conceptually quite 
simple.7'9 Since only incoherent backscattered power is considered, one merely 
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adds the average backscattered power (or a ) for the slightly rough surface 
scale to that for the very rough surface scale.   This is possible because the 
scatter is incoherent for each roughness scale and hence one can add the 
powers. 

An example of the average radar cross section per unit area <r   is com- 
puted and shown in Figure 6 for four different values of surface dielectric con- 
stant.   Both the vertical and horizontal polarization states are shown.   The 
very rough surface scale is assumed to have a Gaussian slope distribution with 
mean square slope s such that tan-1 s = 10 deg.   Two sets of slightly rough 
scale parameters are assumed, and they are given in the figure; in one case 
the slight roughness has a larger rms slope, i.e., tan-1 s = 23.6 deg, while 
in the other the rms slope is approximately the same as that of the very rough 
scale, i.e., tan"1 s = 11.3 deg.   In nature, the smaller roughness scales are 
usually more precipitous than the larger scales; consider, for example, the 
gently sloping hills and valleys along with the more steeply sloping rocks and 
pebbles.9 

From the curves of Figure 6, one sees that the backscattering near 
normal incidence is produced by the very rough scale; at these incidence angles, 
this component dominates that from the slight roughness.   Radar engineers 
commonly refer to this as the "specular" component of backscatter.   This name 
fits the explanation, for the optics techniques discussed earlier show that those 
areas of the large roughness which are specularly oriented produce backscatter. 
On the other hand, near grazing the backscattered power due to the slight rough- 
ness dominates.   Radar engineers have termed the component in this region the 
diffuse component and have been at a loss to explain the mechanism producing 
it.   Empirically, this component for certain surfaces has appeared to fit a 

3/ 
cos 9. law, while at other times a cos 2 9. or cos2 9  appear to be better fits. 

It is this author's conviction that this diffuse component is produced by the 
slight roughness scales present, and the theory presented in paragraph 1 above 
is adequate to explain it, especially close to grazing. 

Other physical mechanisms, of course, have a hand in the scattering 
process besides the slightly and very rough surface scales.   Intermediate-scale 
roughness is usually present, and this component will produce an effect around 
the inflection point of the curves, i.e., around 9. = 30 deg ( Figure 6).   In 

general the intermediate scale will produce an increase in this region of 3 to 
4 dB over that shown in the figure, but this can be only qualitatively established. 
Multiple scattering is another phenomenon which, as yet, has not yielded to 
analytical solution; this effect is expected to be especially serious for surfaces 
with extremely precipitous slopes.   Consider, for example, an airborne radar 
looking at downtown Manhattan; nearly all of the backscatter comes after multiple 
reflections between buildings and ground. 
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Despite the neglected effects, the composite surface model presented 
here and the curves of Figure 6 are in striking agreement with measurements 

of a   from certain classes of surfaces.   Among the types of natural surfaces 
appearing to fit this model are the sea surface, certain sections of terrain 
(including desert and mountainous areas), and the lunar surface.   A few 
samples of measured curves will be presented later. 

4.   Vegetation Cover: Average Radar 
Cross Section per Unit Area 

Vegetation cannot be modelled well as a rough surface whose height 
varies about a mean plane, as in the preceding sections.   Hence, there have 
been very few meaningful analytical treatments of the problem because of the 
general complexity.   Several things occur in vegetation to complicate the 
problem.   Nearly vertically oriented leaves, stems, and trunks result in 
multiple scattering between neighboring parts, especially where the foliage 
is dense.   Furthermore, since the foliage represents no neatly defined inter- 
face, the incident wave can penetrate and even propagate through the foliage 
later for a certain distance. 

The only meaningful analysis of a vegetation-resembling model (to this 
author's knowledge) was done by Peake.11»12  He considers a model consisting 
of a layer of randomly-placed vertical-preferring dielectric cylinders.   While 
he neglects multiple scattering between cylinders, he does take into account the 
fact that the wave can propagate into the layer and be attenuated by the cylinders. 
The final results he obtains for the average radar cross section per unit area 
are a function of four parameters related to the foliage:  (1) the density of the 
cylinder spacing, (2) the cross-sectional area of the stems, or cylinders, 
(3) the water content of the stems, or cylinders, and (4) wavelength.   The 
results are too complicated to be presented here, but two "typical" sets of 
curves are shown in Figure 7 as a function of angle of incidence.9 Water con- 
tent is taken to be 40 percent, and an X-band frequency is assumed.   The 

quantity <J   for both the vertical and the horizontal polarization states is shown. 
The parameters which are varied are A, the average cross sectional area of a 
typical stem, or cylinder, in cm2, and N, the average number of stems, or 
cylinders, per cm2.   Peake notes that for a grass field, typical values of A are 
1.3 x 10~2 cm2 and for N are 1 to 4 blades/cm2. 

One notes that there is no strong return near normal incidence and that 
the return may actually increase near grazing incidence, most significantly for 
vertical polarization but also for horizontal.   This is of course due to the stems, 
or cylinders, which are oriented near the vertical direction.   This is a charac- 
teristic of much of the measured radar return from foliage also. 
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5. Slightly Rough Surface: Variance of Radar 
Cross Section per Unit Area 

As mentioned in the section on volume clutter, it is often desirable 
to know the variance of the radar cross section in order to have an estimate of 
how far the received clutter power will deviate from its mean value.   The 
variance of the radar cross section per unit area a is defined as the average 
of the square of this quantity minus the square of the average, i. e., 

Var er = «A - <cr>2 ■ «j*> - <x° (22) 

Since or   has been derived in a former section for a slightly rough surface, only 
<al>t or the second moment of the radar cross section per unit area, is 
needed. 

An expression for «r2> has been obtained by this author using the same 
perturbation techniques as discussed previously (paragraph 1).   Because of the 
complexity of the details, only the results will be presented here. 

<a*> J- 4ffk* cos4^ la A2   W2/-2kQ sin $, Oj (23) 

i 
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where in this case W2 (p,q) is defined in terms of the correlation function 
between £3(x,y) and£(x + Ax, y + Ay), i.e., let <£4>R2(Ax, Ay)> 
= <C3(x,y) Ux + Ax, y + Ay)>.   Then 

W2(p,q) 

/     . oo        oo 

«±Lf    /    R2(Ax,Ay)e-iAxP-Ax^ d(Ax) d(Ay)   .     (24) 
7T 

As an example, when the surface height t, is Gaussian distributed, 
R2(Ax,Ay)  = Ri(Ax,Ay), and <£*> = 3<t2> =3(h2)2.   Then 

2        o   °2 <cr> = 2a and Var [a ] = a 
02 

(25) 

These equations show an important result:   When the surface height is a Gaussian 
variable, the variance of the radar cross section per unit area is equal to the 
square of the average radar cross section per unit area.   This relationship was 
shown to hold also for volume-distributed clutter.   In fact it can be shown by 
finding the higher moments than the second that the probability density of the 
radar cross section is exponential when the surface is Gaussian.   Hence the 
conclusion:  The clutter power return from a slightly rough Gaussian surface 
has an exponential probability density distribution typical of separate distributed 
clutter sources. 

When the surface height is not a Gaussian variable, the above statement 
is not strictly true.   The error involved in this assumption is not expected to be 
appreciable, however. 

♦ 

6. Very Rough Surface: Variance of Radar 
Cross Section per Unit Area 

The variance of the radar cross section per unit area is defined 
here in the same manner as in the preceding subsection, i.e., Eq. (22).   As 
there the variance provides an estimate of the amount of deviation of received 
clutter power from a very rough surface from its average value.   An expression 
for <ff2> , the average of the square of the radar cross section per unit area, or 
second moment, has been derived by this author and only the result is given here. 
The method used is based on the physical optics principle; most of the symbols 
and terminology used here are defined in paragraph 2 above on the average 
radar cross section per unit area of a very rough surface. 

«r2> = 2 (jrsec40. !R(0) .)-(, tan 0., 0;  tan 6., 0 V (26) 
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The quantity Pit, ,i ; £,',£,' Jin this equation is the joint probability density 
\ x   y    x   y J 

function for the surface slopes I, ,t>   in the x- and y-directions at the surface 

point (x,y) along with the surface slopes £*,£,' at the point (x*,y'). where 
x   y 

the points (x,y) and (x*,y') are widely separated.   In effect, if these two points 
are far enough apart, the surface slopes at one of them are independent of the 
surface slopes at the other.   This demands that the surface region one is illumi- 
nating at a given time be considerably larger in its dimensions than the surface 
height correlation length 4; when this requirement is satisfied, then the random 
variables £, ,t,   are statistically independent of the random variables £,",£'. 

Then the above probability density function can be written 

where P it, ,t> 1 is the simple joint density function of I , t,   at a given point 

(x, y) as defined in a previous section.   Then Eq. (26) can be simplified and 

written in terms of <j , and the variance reduces to the expected result: 

<a2> ■ 2a02   andVarfa]  = a02  . (28) 

Higher moments of a may be derived by the same technique, and when 
the surface area illuminated is large compared to the surface height correlation 
length i , the results simplify in the same manner as the above equation.   The 
probability distribution of the radar cross section per unit area a becomes 
exponential also.   Again the conclusion can be stated:  The clutter power return 
from a very rough surface, whose illuminated area is large compared to sur- 
face correlation length, has an exponential probability density distribution 
typical of separate distributed clutter sources. 

When the surface area inside the resolution cell is not large compared 
to the very rough scale correlation length, the above results for the variance 
and conclusions are not true.   In a short pulse radar, the area inside the resolu- 
tion cell may not be large enough to meet this requirement.   Such is the case, 
for example, when a radar pulse illuminates only a portion of a mountain 
simultaneously.   In such a case, the variance of the received power from a very 
rough surface can be shown to approach infinity as the surface area inside the 
resolution cell approaches zero.   The mathematics for this case are complicated 
and have not been solved, to this author's knowledge. 
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7.  Measured Radar Cross Section per Unit Area for Sea Surface 

Many measurements of a  have been made for the sea surface since 
World War II at a variety of frequencies, sea states, and incidence angles. 
Unfortunately, they are too numerous and at the same time, many of the mea- 
surements are incomplete or sketchy.   Only a brief attempt is made to sum- 
marize them here. 

Two sets of curves at different sea states as a function of incidence 
angle from vertical 0. are presented here.   These are made at X-band for both 
the vertical and horizontal polarization states.9 In Figure 8(a), the wind is 
3 knots, the waves are about 5 in. high (above the mean surface), and the 
ripples are about 0.8 in. or less.   In Figure 8( b), the wind is 30 knots, the 
average wave height is 4 to 5 ft (above the mean surface), and the ripples are 
about 3.5 in. high.   In this figure the surface contains very rough scales as 
well as slightly rough, and hence is a composite.   The presence of the strong 
specular component near normal incidence is especially evident in (a), where 
the surface is not as disturbed.   The larger return near grazing for the vertical 
polarization states is also evident, in agreement with mathematical results of 
previous sections. 

A recent excellent collection or radar cross section measurements of 
the sea at various sea states and frequencies has been made by Nathanson.5 

Some of his results are presented here in Table II.   These measurements are 
generally accurate to about 3 dB.   The data presented here give a clear enough 
estimate of the magnitude of sea clutter power and should serve as a tool in 
radar system design. 

f 

One important fact is predicted by the tables:  The sea clutter power 
return increases substantially, especially near grazing angles, as frequency 
increases.   This behavior is expected and is in agreement with the mathematical 
results of previous sections. 

8. Measured Radar Cross Section per Unit Area tor Terrain 

Measurements of cr   for various types of terrain have also been pro- 
duced in abundance.   One of the most extensive set» of measurements was made 
by The Ohio State University.,3 These measurements were made at X-band 

through K -band frequencies.   Dependence of a   upon angle of incidence for a o typical terrain types are shown here.9  Figure 9 shows a   for a plowed field at 

X- and K -bands.   Figure 10 shows <r   for a 2 in. grass surface at these 
£1 
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frequencies, while Figure 11 shows a   for a field of soybeans 3 ft deep. 
Figure 12 shows the return at X-band for a desert area, and Figure 13 shows 

a   for a built-up area (city) containing buildings. 

To get a better idea of hew a  varies over a wider frequency range, 
Table III was prepared from retiults collected by Nathanson.s Several important 
facts are evident from this table.   (1) Land clutter power return near grazing 
is considerably greater than for sea clutter.   (2) At lower frequencies, land 
clutter power return does not decrease significantly as it does for the sea 
clutter.   These conclusions are undoubtedly caused by terrain features causing 
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TABLE II( a).   MEASURED AVERAGE RADAR CROSS SECTION 

PER UNIT AREA cr° FOR SEA SURFACE UNDER SEA 
STATE 1 (5 KNOT WIND) 

Frequency 
Polarization 

States 
a   in dB for Various Grazing (or DepressionJAngles 
0.3 deg 1.0 deg 3.0 deg 10 deg 30 deg 60 deg 

UHF W -70 -60 -38 -23 
0.5 GHz HH -84 -70 -22 

S-band VV -62 -56 -52 -40 -24 
3.0 GHz HH -74 -65 -59 -25 

X-band VV -58 -50 -45 -42 -39 -28    ! 
9.36 GHz HH -66 -51 -48 -51 -26 

K -band 
a 

VV -41 -38 -37 -26 

35 GHz HH -40 -43 

TABLE 11(b).   MEASURED AVERAGE RADAR CROSS SECTION 

PER UNIT AREA a° FOR SEA SURFACE UNDER SEA 
STATE 3 (15 KNOT WIND) 

UHF VV -58 -43 -34 -28 -18 
0.5 GHz HH -76 -61 -50 -40 -21 

S-band VV -55 -48 -43 -34 -29 -19 
3.0 GHz HH -58 -48 -46 -46 -38 

X-band VV -45 -39 -38 -32 -28 -17 
9.36 GHz HH -46 -49 -39 -37 -34 -21   ; 

K -band 
a 

VV -34 -34 -31 -23 -14 

35 GHz HH -36 -37 -31 
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TABLE 11(c).   MEASURED AVERAGE RADAR CROSS SECTION 

PER UNIT AREA a° FOR SEA SURFACE UNDER SEA 
STATE 5 (22 KNOT WIND) (Concluded) 

Frequency 
Polarization 

States 
a   in dB for Various Grazini I (or Depression Angles 
0.3 deg 1.0 deg 3.0 deg 10 deg 30 deg 60 deg 

UHF VV -75 -25 
0.5 GHz HH -65 -53 -i6 

S-band VV -50 -38 -35 -28 
3.0 GHz HH -44 -42 -37 -38 

X-band VV -39 -33 -31 -26 -20 -10 
9.36 GHz HH -39 -33 -32 -31 -24 -12 

K -band 
a 

VV -31 -30 -26 -20 - 4 

35 GHz HH -27 -20 
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scatter (viz., trees, buildings, hills, etc.) are large in terms of wavelength even 
down to the UHF band whereas sea waves are only large in terms of wavelength 
■iown to about S-band. 
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Section VI. SPECTRA OF CLUTTER ECHOES 

1.  Signal Length and Its Relationship to Signal Spectrum 

This section is concerned with the spectrum of echoes received from 
clutter.   For the most part, the subject of interest will be the change in the 
received signal spectrum, produced by the clutter itself, from that of the trans- 
mitted signal.   In general, the phenomena associated with clutter can produce 
widening of the transmitter signal spectrum,* as well as a shift to a new center 
frequency; narrowing of the spectrum can never be produced by random clutter 
sources.   This subsection, however, is concerned with the spectrum of the 
signal itself without any change or degradation by the clutter sources.   The 
section is not meant to be a thorough treatment of the subject; Section II provides 
a more thorough description of radar waveforms and their spectra which are 
commonly used in clutter rejection schemes.   It does provide a necessary base, 
however, on which to discuss the further changes brought about by the clutter. 

In general, the width of the signal spectrum centered at the carrier 
frequency is equal to the reciprocal of the signal length.   For most systems 
attempting to separate a moving target from clutter by the Doppler shift between 
the signals, this spectrum width must be relatively small, e.g., of the order 
or 500 Hz or less.   This in turn requires quite long signal trains, of the order 
of 2 msec or greater.   Usually, the only way in a conventional radar of providing 
a signal this long and maintaining any kind of range resolution capability is to 
transmit a pulse train.   The signal, then, is considered to be made up of the 
entire train of pulses, even though each individual pulse may be quite narrow. 
Tne frequency spectrum of such a pulse train consists of a train of spikes, each 
of which is narrow, e. g., 500 Hz for a 2 msec duration train, and which are 
separated in frequency by the pulse repetition rate f    . 

PR 

While the width of an individual spike in the frequency spectrum is 
roughly proportional to the reciprocal of the total .signal duration, the exact 
shape of the spike and its sidelobes, if any, are a iunction of the broad amplitude 
weighting of the time signal.   Lower sidelobes about the spike can be obtained 
by amplitude tapering the pulse train.   Specifically, the exact shape of one of 
the spikes is the Fourier transform of the amplitude modulation, or weighting, 
of the time signal train.   In a phased array antenna, for example, one may 
desire to transmit a train of pulses in a given direction to separate a moving 

# Broadening of the signal spectrum by clutter degrades the ability to 
resolve it in frequency and, hence, to reject it by any of the techniques described 
in Section II which are based on relative motion between target and clutter. 
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target from the clutter background.   In this case, amplitude tapering of the pulse 
train may be necessary to reduce the sidelobes.   The amplitude time weighting 
to provide minimum frequency sidelobes is directly analogous to the antenna 
aperture amplitude distribution problem for minimum antenna pattern sidelobes; 
the considerable amount of technology already available concerning the latter 
problem can be applied to the former with little difficulty. 

In older, mechanically scanned systems, such as ground-based search 
radars where the antenna is rotated in azimuth, an amplitude tapering of the 
pulse train is provided by the antenna pattern itself.   As the antenna rotates, 
its main lobe sweeps across a point target so that the individual pulses striking 

I the target appear to start near zero, rise to a maximum as the antenna bore- 
I sight points directly at the target, and fall off to zero as the antenna rotates 
I off-target.   Assume that g     (<p) is the one-way voltage pattern of the antenna 

| in azimuth (normalized to unity at <p = 0).   If the antenna is rotating, then 
t cp = S2t, where Q is the rotation rate in rad/sec.   The received voltage 
I amplitude of a pulse train from a point target is then proportional to Ig  „(Stt) I2 

v " A Zi 

I if the same antenna is used for transmitting and receiving.   Then the shape of a 
I spike of the frequency spectrum F( f) is proportional to the Fourier transform 
f of this quantity, i.e., 

f 

f 
:s 

F(f)  ~J*    lgAZ(I2t)l2e"i27rftdt  . 
(29) 

For instance, if the antenna pattern is Gaussian, i.e.,  Ig.   (c?) I2 

= exp(-2<p2/A2), where A is the 3 dB azimuth beam width of the antenna, then 
the spectrum is F(f)  ~ exp(7r2A2f2/2n2).   In this case, the total 3 dB width of 

2f2 
the frequency spectrum is f   = —-r.   As an example, the spectrum width for 

an antenna with a 2 deg azimuth beam width and rotation rate of 3 rps is 
f   * 170 Hz. 
s 

2'  Spectrum Width due to Clutter Source Velocity Differences 

In certain distributed clutter situations, signals reflected from the 
clutter are spread in frequency due to slight velocity differences between the 
clutter sources.   This is the case, for instance, with falling raindrops which 
in practice have slightly differing velocities depending on drop size.   It is also 
the case for trees and foliage waving in the wind.   It is true for the sea surface, 
but the sea surface will be dealt with specifically later. 

f 
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Figure 14 shows an infinitesimal packet of clutter particles moving in 
a vertical direction, while the radar views it from an aspect a with respect to 
the vertical.   The praticles could represent raindrops, or they could represent 

/ 

A 
CLUTTER SOURCES 

v, VELOCITY OF A SINGLE PARTICLE 

I       \- RADAR ANTENNA 

FIGURE 14.   GEOMETRY FOR DISTRIBUTED CLUTTER SOURCES 
MOVING AT VELOCITIES CLOSE TO v WITH RESPECT TO 
RADAR ANTENNA 

leaves of a tree.   Assume all the N particles are moving in the same direc- 
tion, i.e., the vertical direction, but have different velocities, i.e., vt, 
V2. N* 

For simplicity, assume that a monochromatic signal illuminates 

tho particles; the power density spectrum of such a signal is a unit impulse in 
the frequency domain centered at f 

.«((- fo). 

the carrier frequency, i.e., S (f) 

Define p(v) as the probability density function for the velocity of 

a given particle. Then it may be shown in an elementary manner that the signal 
reflected from the particles has a power density spectrum S (f) proportional to 
this probability density, i. e., 

S (I)  - ^—^—   p o 2f  cos a F 

f - f 

jZi  cos a\ /c 
(30) 

Simply interpreted, this equation shows that the received signal spectrum has 
the same shape, or functional form, as the probability density function for the 
particle velocities. 
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If the standard deviation, i.e., square root of the variance, of the ran- 
dom variable v is v    , then the half-power bandwidth Af of the clutter spectrum 

is given roughly by the following equation 

4vsd 
Af =——f   cos a   , (31) 

c     o 

whica is easily seen from inspection of Eq. (30). 

Mean drop velocities in a rainfall vary between 4 to 6 m/sec for light 
rains to 9 m/sec for heavy rains.e The standard deviation of drop velocities 
about the mean v  . is about 1 m/sec.   There are usually a significant number 

of smaller sized raindrops which fall very slowly, even in a heavy storm, 
resulting in a slow fall off of p( v) for small v.   As an example, at S-band 
(f   = 3000 MHz) and at an elevation angle of 10 deg, i.e., a = 80 deg, a heavy 

rainfall will shift the center frequency of the clutter return by 31 Hz and will 
produce a frequency spread for a monochromatic incident wave of about 7 Hz 
between half-power points.   In general, however, there will be a significant 
amount of power in a bandwidth of about 40 Hz, since the energy does not fall 
off rapidly beneath the lower 3 dB point.   This spreading also increases as the 
elevation angle increases; if the radar is looking vertically (a = 0), the spread 
is about 200 Hz at S-band. 

The standard deviation of foliage velocity is a function of the wind speed. 
Nathanson5 has found from examination of experimental data that this velocity 
standard deviation for wooded terrain averages about 0.03 m/sec for 0 to 10 knot 
winds, about 0.1 m/sec for a 15 knot wind, and about 0.3 m/sec for a 20 knot 
wind.   For an S-band search radar looking in the horizontal direction across the 
foliage, i.e., a ■ 0 in this case because foliage motion is horizontal, this 
results in a half-power frequency spread of a monochromatic incident wave cJ 
about 4 Hz. 

3.  Spectrum Spreading for Distributed Clutter due to Relative 
Motion and Finite Beamwidth 

The preceding subsection examined the spectral shift and spreading 
of a monochromatic incident .vave due strictly to velocity deviations of the 
clutter particles.   This subsection is concerned with the spectrum spreading 
effect of distributed clutter sources moving at a -elocity v caused by a finite 
beamwidth. *   AH of the clutter sources inside the resolution cell are assumed to 

*In practice, spectral spreading is a result of several effects acting 
simultaneously; for example, one usually has both a finite beamwidth as well 
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be moving in the same direction with respect to the radar antenna and at the 
same velocity v.   The results of this subsection apply to the situation where the 
antenna beam itself is in motion with respect to the clutter, as in an airborne 
or missile-mounted radar.   It can also apply to the case where the radar is 
stationary but the clutter particles are in motion, as, for instance, in a rain 
shower. 

The analysis here can apply to volume-distributed clutter, such as rain, 
inside the resolution (Figure 15).   The clutter particles in this case fill a 

RADAR RESOLUTION CELL 

v, VELOCITY OF PARTICLES IN RESOLUTION CELL 
WITH RESPECT TO RADAR ANTENNA 

RADAR ANTENNA 

FIGURE 15.   GEOMETRY OF VOLUME-DISTRIBUTED CLUTTER 
SOURCES MOVING AT CONSTANT VELOCITY v WITHIN A 
RADAR RESOLUTION CELL OF FINITE BEAM WIDTH 

as clutter particle velocity differences.   It is least confusing, however, to 
analyze these effects separately, and later it will be shown how tney can be 
combined. 
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The angle a is measured between the CT 
truncated section of cone of thickness — . 

4*5 

velocity vector and the antenna boresight.   The angle A to a portion of the 
resolution cell from boresight lies in the plane containing these two directions, 
i.e., the plane of the page, in that case.   For a ground-based radar looking up 
through rain clutter, the raindrop velocity is usually close to the vertical 

direction and, in this case, the angle — a is the elevation angle of the beam. 

The analysis can also apply to surface-distributed clutter when viewed 
from a moving airplane or missile platform (Figure 16). The radar platform 
velocity is v. and the component of velocity on the surface in this case is v. 

The angle a, then, is the angle between the velocity vector projection on the 
ground plane and the plane of incidence.   The plane of incidence contains the 
vertical to the surface and the antenna boresight.   The angle A is measured in a 
plane containing the antenna boresight and an arc struck on the surface by the 
range resolution cell, i.e., in a plane normal to the plane of incidence. 

RADAR ANTENNA '  [X 

vA< VELOCITY OF AIRBORNE RADAR PLATFORM 

ROUGH SURFACE WITHIN 
RADAR RESOLUTION CELL 

EARTH SURFACE (TERRAIN OR SEA) 

FIGURE 16.   GEOMETRY OF SURFACE-DISTRIBUTED CLUTTER 
VIEWED FROM MOVING RADAR PLATFORM FOR RADAR 
RESOLUTION CELL OF FINITE DIMENSIONS 

The mechanism responsible for spreading of the spectrum in this case 
is not difficult to understand.   Even though the velocity of all the clutter sources 
across the resolution ceil is the same with respect to the antenna, the radial 
component of their velocities varies slightly with A over the finite beam width 
of the resolution cell.   It is the radial velocity component of a moving particle 
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* For volume clutter, one also integrates over e.   Since the radial 
velocity of clutter sources does not vary with e, this integration may be 

SO 

approximated in the usual manner, i.e., J     lg(A, c) I4 de = e  .    Ig(A.O) I4, 

where e„ ._ is the half-power beam width in the e direction.   For surface clutter, 
iiflB 

€ is a function of time as the pulse propagates across the ground.   One does not 
CT integrate over e in this case, but multiples by  , the surface width sub- 

tended by the resolution cell,   iß is grazing angle.) 
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which determines the Doppler shift of the wave reflected from it.   Hence, the 
return signal spectrum from the clutter sources within the entire resolution 
cell will be spread over a finite bandwidth when the incident signal is mono- 
chromatic.   This spectral spreading is a function of antenna beam width in the 
A direction, being less for narrower beam widths; it is independent of range. 

| 

As before, assume a one-way voltage pattern of the antenna in the | 
A-direction as g(A, e), normalized to unity on boresight, i.e., at A = e = 0. 
The angle e is measured in the plane perpendicular to that containing A.   The § 
power spectral density received when the same antenna is used for transmitting | 
and receiving is obtained by integration |g(A, e) I4 times the reflected power I 
spectrum from a given point at angle A from boresight.   The latter energy 
spectrum is an impulse function which varies with A. *   Only the integration | 
over A is of concern here, for it is this process which provides the received | 
signal spectrum.   Other constants appearing in the radar range equations, 
i.e., Eq. (2) and (4), are neglected here also for simplicity.   Then the \ 
received signal spectrum due to spectral spreading of the incident monochro- \ 
matic signal is | 

■ f   1 -      cos a 
sen ~zrf—, I—f—-^ .«ir . (32) 

— f  sin a  B\ f  sin a co \       c   o 

Interpreted simply, the above equation shows that the received signal power 
spectrum has the same shape, or functional form, as the antenna pattern.   The 
above result is valid so long as a * 0.   The approximate half-power bandwidth 
Af of the clutter spectrum may be easily determined from the above equation 
in terms of the 3 dB beamwidth &«dB In the A-direction: 

Af = TfoA3dB8ina   ' (33) 

here A.Jri is expressed in radians. 
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As an example, consider a ground-based S-band radar with a half- 
power elevation beam width of 6 deg.   Let the elevation angle of the beam be 
10 deg, i. e., a = 80 deg.   Assume a moderate rainstorm where the drops are 
falling vertically at a mean velocity of 9 m/sec.   The Doppler shift in the 
center of the spectrum is 31 Hz.   The half-power bandwidth Af of the received 
clutter spectrum, for a monochromatic transmitted signal, is about 18.6 Hz. 
This spectrum spreading caused by raindrops falling through a finite sized 
resolution cell is often called "shear." 

When a - 0, the clutter signal power spectrum has approximately the 
following form: 

S (f)   ~    »K o fvf 
1 

g 

N  C 

The half-power bandwidth in this case is 

vf 
Af * 

, e (34) 

2c    3dB  ' 
(35) 

i 
t 
l 

where A_,_ beam width is measured in radians. 3 dB The above results for a =* 0 

have application to a moving radar, such as that on a homing missile looking 
directly ahead through rain, or the terrain-avoidance radar on an aircraft, 
which is looking at the ground straight ahead.   As an example, assume that a 
missile looking ahead is flying at 600 knots, i.e., v * 300 m/sec, and its 
S-band radar half-power beamwidth is 6 deg.   Then the rain clutter spectrum 
spreading due to the finite beamwidth is about 15 Hz, while the Doppler shift 
of the spectrum center is about 6 kHz from that of the transmitter frequency. 
One can see that the clutter spectrum spreading is not nearly as great when 
the radar is looking ahead, i.e., a - 0, as it is when the radar is looking off 
to the side.   For comparison, if the same 6 deg beamwidth S-band antenna on 
an aircraft at 600 knots were looking off to the side, a - 90 deg, the clutter 
spectral spread would be about 700 Hz. 

4.  Sptctrum Spreeding for Distributed Clutter due to Relative 
Motion and Finite Pulse Length 

Another factor causes spectral spreading of a monochromatic wave 
incident on distributed clutter.   This is the finite size of the illuminated area. 
The effect is illustrated in Figure 17.   The component of velocity in a direction 
containing the plane of incidence is v.   The range resolution cell depth is 
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RADAR RESOLUTION CELL 
CORRESPONDING TO TIME t1 

RADAR ANTENNA 
AT TIME t, 

.V 

RADAR ANTENNA 
AT TIME t2 

RADAR RESOLUTION CELL 
CORRESPONDING TO TIME t2 

FIGURE 17.   GEOMETRY OF DISTRIBUTED CLUTTER AT GIVEN 
RANGE FROM MOVING RADAR AS VIEWED AT TWO 
DIFFERENT TIMES 

CT 
CT 

— for volume-distributed clutter.   It is a 2 2 cos ß 
for surface clutter, where ß is 

the grazing angle, and the velocity is assumed to be in a plane parallel to the 
surface.  Assume that the return at radar position 1 at elapsed time t  comes 

from the solid resolution cell.   Then on the next pulse transmission, the radar 
is located at position 2.   The return at elapsed time t  now comes from the 

dashed resolution cell.   Both of these resolution cells do not contain the same 
clutter sources, but a portion of the sources are shared by the two.  As the 
velocity increases there is less overlap for a given time. 

If one computes the correlation coefficient for the overlapping areas for 
a given elapsed time T he finds it is 

R(T) = 

i,      vT    ,       vT      , 11 "T   tor  T<1 

vT for   -±>1 
(36) 

CT 
where L is the length of the resolution cell, i.e., — for volume clutter and 

CT ■x . for surface clutter. 
2 cos/3 

The Fourier transform of this correlation function is then the received 
power density spectrum of the returned signal.   This is 
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2 /TTL 
sin2 I—f 

S (f) = \^——. <37> 
0 L f2 

2 —* tr v 

The approximate half-power bandwidth of this spectrum is 

_v 
L 

Af = — (38) j 
'.. 

As an example, consider an aircraft with a narrow pulse (T = 0.1 ixsec) 
flying at 600 knots and looking straight ahead.   The length L of the area is then 
CT 
—, where the grazing angle ß for surface clutter is considered small.   Then the 

half-power bandwidth of the clutter spectrum is 20 Hz. 

Notice from Eq. (37) that as velocity v approaches zero or as the 
I resolution cell length L approaches infinity, the spectrum approximates an 
I impulse function.   This is expected, since the input power spectrum is an 
f- impulse function, and when there is no apparent motion, there should be no 
I effect on the input spectrum.   It is also interesting to note that the preceding 
I section showed that decreasing the size of the resolution cell by decreasing 
I beamwidth has the effect of decreasing the spectral spreading.   Here, however, 
I the decrease of the cell size L is shown to increase the spectral spreading. 
t This is because the spectral spreading arises from different mechanisms in 
| each case. 

| 5.  Spectrum Spreading from Sea Surface due to Surface Movement: 
I Slightly Rough Scale 

\ The sea surface is unique in that the roughness is in motion as a 
I function of time.   Hence, one would expert the sea to produce spreading of a 
J monochromatic incident signal spectrum, even for a stationary or ground- 

based radar.   This subsection will be concerned with the slight roughness 
present on the ocean surface, i.e., capillary waves.   In a preceding section 
it was shown that this slight roughness, roughness whose scale is less than 
wavelength, can be treated analytically by a perturbation technique.   It was 
also noted that when larger scale roughness is also present, i.e., swell, or 
gravity waves, the slight roughness is responsible for backsnattered power 
near grazing incidence.   It will be the purpose of this section to show the 
effect of this slight roughness, when it is in motion, on the spectral spreading 
of a monochromatic incident wave. 
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The analysis of the case where the roughness is in motion proceeds in 
much the same manner as where the roughness is stationary.   The surface in 
this case is merely made a function of another variable, time.   The perturba- 
tion approach is used.7» u>12 Details in the derivation are omitted here for lack 
of space and only the result is given.   Much of the terminology is as defined in 
Section V accompanying Eq. (13) and (14).   The results presented belon- for 
the power density spectrum are normalized as radar cross section per unit 
surface area per hertz bandwidth. 

S (f)  = 47r2k4 cos4 6. 
O 0 1 

la W.I-2k   sinö,, 0, 2;rf 
i\     o i 

(39) 

where all symbols are as defined with Eq. (13), and W. (p, q,w) is the spectral 

density of the surface roughness height in two spatial dimensions (corresponding 
to p and q) and the time variable (corresponding to w).   It is defined in terms 
of the surface height correlation function, < £(x,y,t)£(x + Ax, y + Ay, t + At)> 
= h2Ri(Ax,Ay,At), as follows: 

00       00       00 

Wjtp.q.w) =—•/  /  /  R^Ax.Ay.AtJe'^'^'^^dfAxJdfAyJdlAt)   . 

(40) 
7T     -00  -°o —*> 

Here £(x,y,t) is the random variable representing the slightly rough surface 
above the x-y plane at time t. 

Equation (39) shows that the power spectral density of a monochromatic 
signal scattered from an undulating slightly rough surface is directly proportioi   1 
to the height spectral density of the moving surface itself.   As an example, con- 
sider a Guassian heignt correlation coefficient, Rj(Ax, Ay, At) 
- exp[-(Ax2 + Ay2)/I2 + At2/T2), where all three of the variables, Ax, Ay, 
and At, are assumed uncorrelated.   Physically T has the interpretation of the 
correlation time duration of the rough surface and the height roughness spectrum 
from Eq. (40) becomes 

(• 
W[-2k   sinfl , 0 2jrfl hVj exp f-k2l2sin291 -irW) . (41) 

I 
I 

Then the power spectral density for the slight roughness becomes 

S (f) = aV2T exp( -irW)   , (42) 

where a   is the average r.idar scattering cross section per unit surface area as 
defined by Eq. (13) and (17). 
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For the slight roughness on a water surface, the correlation duration T 
ia likely to be short, i. e., of the order of 0.2 sec.   Then the bandwidth of the 
signal is relatively small, i. e., 2.5 Hz.   One point is important, however; the 
bandwidth of the received signal does not vary with the transmitted frequency. 
In all the other sections here involving clutter source relative motion, the band- 
width is shown to be directly proportional to transmitted frequency.   In all the 
other sections, however, the individual clutter sources are assumed relatively 
far apart with respect to each, and hence the phase change introduced by each is 
independent, being proportional to source velocity and incident frequency.   For 
the slightly rough surface, however, the distance between wavelets is small 
compared to wavelength, and their motion does not exceed a wavelength.   Hence, 
a different mechanism is responsible for producing spectral spreading here. 

6.  Spectrum Spreading from Sea Surface due to Surface Movement: 
Very Rough Scale 

This section will be concerned with that portion of the sea surface 
roughness which may be larger than wavelength in height scale, i.e., the very 
rough component.   The latter usually includes; what oceanographers term "swell," 
which is one of the two types of gravity waves.   This large-scale roughness is 
also in motion, and hence will produce spectral broadening of an incident mono- 
chromatic radar wave.   The analysis is based upon physical optics, where one 
allows the surface height £(x,y,t) to be a function of time as well as space. 
Then the correlation coefficient of the surxace height is a function of these three 
variables also, as described in the preceding paragraphs.   Again, the mathemati- 
cal details are omitted here and only the results are presented. 

The received power spectral density for an incident monochromatic 
signal is again expressed in terms of radar scattering cross section per unit 
surface area per hertz bandwidth.   Much of the symbols and terminology have 
been defined previously in Section V for Eq. (18). 

S (f) = 77- sec5 Bt IR(0) I2 P/tan B., 0,—r- 
0 41 1 III 

0 1 „   O 

(43) 

2—cos 0. 
c i 

where P £ ,1» ,L   is the joint probability density function for the surface slopes 

£   and £   in the x- and y-directions and for the vertical surface velocity C , 
x y  ar t 

For the sea surface under normal conditions, these three i.e., üt =—. 

variables are usually correlated to some extent, as witnessed by the presence 
of horizontally moving waves, which appear to last for a certain time duration. 

51 



A more thorough analysis would take this surface anisotropy into account.   For 
the brief consideration here, however, the surface will be assumed to be 
isotropic with t, , t, , and L, uncorrelated. *   Such an isotropic roughness may be 

x   y t 
thought of as an average of the sea surface over all possible look directions. 

For example, assume a Gaussian joint density function for Pft, , t, , t,\ . 
Then the power spectral density becomes ^ ' 

S (f) = a exp 
o 3/   v  , 

(27T)/22-^f    COSÖ. 

(44) 

Here a   is the average radar cross section per unit surface area, as defined by 
Eq. (20).   The quantity v  , is the standard deviation of the vertical surface sä 
velocity t, and is given in terns of the mean square surface height h2 and wave 

correlation duration T as follows 

v«d = — • <45> sd      T2 

Equations (43) and (44) illustrate that clutter spectral spreading aris- 
ing from undulation of a very rough surface produces a bandwidth proportional 
to the surface velocity and illuminating frequency.   This is expected, since 
scattering from a very rough surface arises from areas whose slopes are 
oriented so that they specularly reflect.   As the surface moves, these specular 
areas move about and produce phase changes proportional to surface velocity 
and illuminating frequency.   In this respect, the mechanism here is nearly the 
same as that for isolated, moving particles, such as chaff or raindrops; the 
similarity is also borne out by the similarity of Eq. (43) with (30) for isolated 
particles.   The mechanism is different from that of the slightly rough surface, 
as discuRsed in the preceding section. 

«An attempt to include surface anisotropy would necessarily include at 
least two, and possibly three, additional constants in the model.   These would 
define the ocean wave propagation direction with respect to the radar, the wave 
phase velocity, the correlation lengths in the x- and y-directions, etc.   More 
parameters are accompanied, unfortunately, by greater obscurity. 

52 



As an example, assume a surface velocity standard d /iation v    « 1 m/sec, 

typical of the sea surface.   At S-band f f   = 3000 MHz 1 and .acidence angle 

6. = 80 deg (grazing angle of 10 deg), the half-power bandwidth induced by the 

roughness motion is about 8 Hz. 

7.  Spectrum Spreading from Sea Surface due to Surface Movement: 
Experimental Results 

In practice, the sea surface consists of several scales of roughness, 
with at least one scale which is smaller in height than wavelength, i.e., slight 
roughness, and usually with a roughness scale larger in height than wavelength, 
i. e., very rough component.   As discussed in paragraph 4, the scattered power 
from such a composite surface can be modelled by adding the cross sections 
of each of these components, and the result is at least more valid than either one 
alone.   The same superposition is also valid for the clutter spectrum, but the 
results are complicated and depend upon many parameters, e.g., angle of 
incidence, wavelength, polarization, slight roughness surface statistics, large- 
scale roughness surface statistics, and the sea surface time statistics.   A pre- 
cise treatment would involve a more thorough study of actual ocean surface 
space and time statistics for different sea states.   Then the results could be 
added together in a meaningful fashion to obtain a parametric study of the sea- 
induced clutter spectrum.   Without a more detailed knowledge of these sea 
surface statistics, it is difficult to see at which incidence angles the slight 
roughness clutter spectrum dominates the very rough scale spectrum, and 
conversely.   The purpose of the preceding two sections was to provide a physical 
interpretation of the clutter mechanisms giving rise to spectral spreading. 

For the purposes of this report, only rough estimates are needed for 
clutter power bandwidths induced by the sea.   Many measurements have been 
made of this clutter bandwidth.5 It is understood here that the clutter signal 
spactrum under discussion is the coherent signal, i.e., at an IF frequency. 
Another clutter signal spectrum can be defined after amplitude detection; the 
one-sided bandwidth of the latter is approximately twice that of the former. 

The half-power bandwidth may be roughly defined as follows 

4f = 2A\ 
(46) 

where ±v is the average half-power sea surface velocity spread.   This average 
is over various grazing angles and polarization directions.   It is found that Av 
varies linearly from about 0.7 m/sec for Sea State 1 (wind speed of 1 knots), 
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being about 1.8 m/sec for Sea State 3 (wind speed about 13 knots), to about 
2.7 m/sec for Sea State 5 (wind speed about 22 knots).5 The measurements 
show that Av is often somewhat larger than these values for horizontal polariza- 
tion, by 20 to 30 percent, while it is often somewhat lower for vertical polari- 
zation, also about 20 to 30 percent.   As an example, at S-band( f   = 3000 MHz 

one can expect spectral spreading as much as 54 Hz for Sea State 5 from these 
data. 

8.  Combination of Several Spectral Spreading Effects 

The past subsections have considered separately several properties | 
of clutter which can cause spectral spreading of an incident monochromatic | 
signal.   In practice, several of these effects are usually present simultaneously. 
Furthermore, the incident signal itself, as mentioned in the first subsection, 
is not monochromatic, but has a central spectral spike of finite bandwidth.   How 
then does one combine these various effects to obtain the total spectrum of the 
received clutter signal? 

Af* = Ai"2 ♦ If? + Af* ♦ ...   . 
t s i 

(48) 

It is not difficult theoretically to show that the resultant signal spectrum 
S    (f), when several of the preceding processes interact, is the convolution of or 
the separate spectra.   Assume three of the preceding processes produce spread- 
ing, each with its own spectral response S   (f),S   (f),S   (f),toa monochro- 
matic incident signal.   Then 

eo      as 

s JÖ  = /   /  s   (^S   U- *S   Ü - *?)drjd* . (47) 
Or -.     ««   01 02 03 

••40    M»QO 

Although the above convolution technique is exact, it is not very handy 
when one is able only to make rough estimates of the various power spectra. 
A simpler rule of thumb is available in this case for the total bandwidth of the 
clutter spectrum.   It is obtained from the above equation when one assumes that 
the processes responsible for each spectrum are independent of each other. 
The total 3 dB clutter signal bandwidth Af may be found as follows: 

where Af  is the half-power bandwidth of the transmitted signal, Afs is the half- 
B 

power bandwidth of the S   (f), etc. 

i 
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Section VII. SUMMARY AND CONCLUSIONS 

The magnitude of the received signal from distributed clutter sources is 
shown to depend on the size of the radar resolution cell; it depends on its volume 
for space-distributed clutter particles and upon a surface area subtended by the 
cell for surface clutter.   Since the resolution cell size increases with radar 
range, the clutter return increases also at greater ranges; this is especially 
true of volume clutter, such as rain.   The obvious means of reducing the clutter 
echo is to reduce the size of the resolution cell by decreasing the antenna beam- 
width and signal pulse length.   The problem of surface clutter with a ground- 
based radar can be obviated considerably by the use of horizontal polarization. 

The average radar cross section per unit volume for particle scatterers 
is shown to depend on the particle density times the scattering cross section of 
each individual particle.   For raindrops at frequencies up through K-band, this 
cross section varies with the fourth power of frequency, indicating the significant 
advantage in the use of lower frequencies to minimize weather clutter.   Experi- 
mental results are presented which clearly show this fourth power dependence 
of the clutter power on frequency.   The average radar cross section of rain is 
also shown to depend upon the sixth power of the drop radius; thv points up the 
considerable increase in clutter return one can expect from storms with large 
raindrops.   For half-wave chaff dlpoles, the radar cross section depends upon 
the reciprocal of the square of frequency. 

The standard deviation (or square root of the variance) of the radar 
cross section per unit volume for space clutter is equal to the mean itself. 
(The standard deviation gives an estimate of how much the received power 
fluctuates about the mean.)   Furthermore, the probability density of this radar 
cross section ir exponential, and hence the voltage received from volume- 
distributed clutter is a narrow-band Gaussian signal. 

Radar waves are shown to attenuate exponentially with distance through 
rain; this is derived theoretically in Appendix A, and is confirmed by measured 
results presented.   The mathematics shows that the attenuation coefficient (in 
decibels per propagation distance) varies at least linearly with frequency; the 
exact theoretical relationship is complicated because of the variation of the 
water drop dielectric constant with frequency also.   Experimental evidence 
indicates a variation with frequency to the 2.8 power over the upper end of the 
microwave region.   Theory shows that this attenuation coefficient also varies 
linearly with raindrop density and with the third power with drop radius.   These 
results are also in general agreement with measurements. 
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The average radar cross section per unit area for a rough surface is 
produced in general by two mechanisms:  the presence of both a large-scale 
roughness, i.e., roughness height is greater than a wavelength, and small- 
scale roughness, i.e., roughness height is less than a wavelength.   The physical 
processes responsible for scatter in each case are different.   Areas of the 
surface oriented normal to the line of sight are responsible for the backscattered 
power in the case of the large-scale roughness; hence, this component is 
dominant for backscattering near the vertical to the surface.   The analysis shows 
that the backscattered power for large-scale roughness is independent of fre- 
quency, and is dependent only on the probability that the surface slope in a given 
region is oriented normal to the line of sight.   The power scattered from the 
small-scale roughness, however, is proportional to the spectral density of the 
surface height components which make up the rough surface.   In addition, this 
power -aries with the fourth power of frequency.   Curves are shown for radar 
cross section computed from these models as a function of the surface 
parameters. 

Results derived for the report show that when the rough surface height 
is a Gaussian random variable, the standard deviation of the power scattered 
from the slightly rough surface is equal to the mean power.   Higher moments 
can be derived, and the results show that the received voltage from such a 
Gaussian surface is itself a narrow band Gaussian signal.   This fact has not 
been mentioned before, and it indicates that clutter signals from this type of 
surface have the same statistical nature as clutter from volume-distributed 
scatterers. 

On the other hand, the standard deviation of the power scattered from 
the large-scale roughness becomes equal to the mean power when the surface 
area illuminated is large compared to the surface roughness dimensions; when 
this is true, the received voltage from the very rough surface is also a narrow 
band Gaussian signal.   Hence the Gaussian nature of the received signal is 
established even when the large-scale roughness height itself is not Gaussian. 

In general, most natural surfaces (such as the sea surface) at micro- 
wave frequencies are made up of both large-scale and small-scale roughnesses, 
it is shown that the small-scale roughness is responsible for power backscat- 
tered near grazing incidence; it is near grazing that most of the terrain and sea 
surface clutter problems of practical interest in a radar system arise.   Experi- 
mental results for the average radar cross section of the sea surface are pre- 
sented.   T:ie measured data near grazing show that this quantity increases with 
frequency, verifying the fact that the small-scale roughness is indeed the 
mechanism producing tfce scattering. 

36 



'S 

Land surfaces covered with foliage or vegetation are more difficult to 
analyze theoretically.   One model for a vegetation layer has been treated, and 
curves for the average radar cross section per unit area computed from this 
model are given.   Analysis of the model shows that scattered power remains 
strong even near grazing incidence.   Return is greater for vertical polarization 
than for horizontal.   Both of these facts can be attributed to the presence of 
stems and stalks which are oriented near the vertical direction.   Experimental 
results are also presented for grassy fields, crops, and wooded areas; these 
tend to follow the predictions of the model.   The measured results are not as 
sensitive to frequency as the scattered power from the sea.   Analytical modelling 
of urban areas and cities is much more difficult, and no successful mathematical 
treatment has yet been completed.   Experimental results for clutter return from 
such urban areas are presented, and, as with vegetation, they show that received 
power is relatively independent of frequency. 

Several properties of radar and clutter are shown to produce both 
spreading and a shift in the spectrum of the transmitted signal.   One mechanism 
which produces spectral distortion is the relative velocity difference between 
particles of volume-distributed clutter such as rain.   If the incident signal is 
monochromatic, the spectral density of the signal scattered from the collection 
of random moving particles is proportional to the probability density of their 
velocities along the line of sight. 

Another mechanism which produces a spectral shift and spreading is the 
motion of the radar platform with respect to the clutter and the finite antenna 
beamwidth.   It is shown that the spectral response to a monochromatic incident 
signal in this case is proportional to the antenna radiation pattern; a narrow 
main beam will result in less spectral spread than a wide one. 

A third mechanism producing spectral spreading in the case of the moving 
radar platform is the finite length of the illuminated area along the velocity 
direction.   The greatest spectral spreading occurs when the platform velocity is 
high and the illuminated area is small. 

The motion of the sea surface also produces spectral spreading of an 
incident monochromatic signal.   An analysis of both the small-scale and large- 
scale sea surface roughnesses shows that each component has its own separate 
effect on the received signal spectrum.   The small-scale roughness has a 
spectral response which is directly proportional to the motion spectrum of the 
surface itself; the signal bandwidth in this case is relatively independent of fre- 
quency.   The large-scale roughness imparts a signal spectral density propor- 
tional to the probability density of the sea surface vertical velocity.   The signal 
bandwidth due to this roughness component varies directly with frequency and 
sea surface velocity.   This result for very rough surfaces is nearly identical 



with that for volume-distributed particles having different velocities, even 
though the analysis is entirely different.   One should expect the slight roughness 
mechanism to dominate near grazing incidence.   Experimental results for sea 
clutter spectra are also given, but they are so sketchy as to make concrete 
comparison with the theory inconclusive. 

Usually several mechanisms interact simultaneously to produce spectral 
spreading.   When this is the case, the final received clutter spectrum is 
obtained as a convolution of the incident wave spectrum with all of the separate 
spectral responses of the interacting mechanisms.   A more useful result states 
that the total received clutter signal bandwidth is the square root of the sum of 
the bandwidths of the various processes producing spreading.   Examples cal- 
culated lor each of the spectral spreading mechanisms show that some of these 
half-power bandwidths for a practical ground-based S-band radar system can 
be as great as 30 Hz, while the clutter spread in a missile-based homing radar 
can be several hundred hertz.   If the central spike of the incident signal spectrum 
is considerably wider than this amount, this clutter spectral spreading has 
little additional effect on the received signal spectrum and can be neglected. 
However, this bandwidth of the spectral spreading produced by the clutter repre- 
sents the lower limit on the coherence of the received signal.   At higher micro- 
wave frequencies, this limit often dictates the optimum performance of clutter 
rejection systems. 
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Appendix A 

THEORY OF RADAR WAVE SCATTERING 
FROM AND PROPAGATION THROUGH 
VOLUME-DISTRIBUTED PARTICLES 

1.    Introduction 

This article treats the interaction of a radar wave with many separate 
objects distributed in space.   These objects may have a fixed orientation with 
respect to each other, such as the molecules in a crystalline lattice.   But more 
often than not, the objects of interest at radar frequencies are randomly 
arranged as raindrops or particles of chaff.   Only the random configuration will 
be discussed in this section. 

The general solution to this problem is considerably more complex than 
the solution for scattering from a single object.   The field which excites any 

given object, say the n    object, consists not only of the incident wave, but 
th 

also the fields scattered from all the other objects toward this n    object.   In 
turn, the fields scattered from all these other objects depend to some degree on 

th 
the fields scattered from the n    object.   This mutual interaction makes it 
extremely difficult to determine a closed form solution for the total scattered 
field without several approximations. 

The first two sections are concerned with the incoherent radar cross 
section of the group of particles.   The final section deals with propagation of 
a coherent wave through the collection of scatterers; a rigorous analysis is 
briefly retraced, and then a simpler derivation of the same result is presented. 
All sections employ the scattering characteristics of each scattering object 
considered alone, and hence presuppose that this information is already avail- 
able or is to be obtained by other means. 

2.    Incoherent Cross Section Obtained from Superposition 

(a) General Theory 

To a crude approximation, one can simply add the scattered fields 
from the individual scatterers, assuming that the scattered field from, say, 

th 
the n    particle, is the same as if all the other particles were removed.   In 
this approximation, then, the following assumptions are implicit: 
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1) All multiple scattering interactions between the various particles 
are ignored. 

2) Each particle is assumed to be excited b;, only the incident plane 
wave, which is not attenuated as it moves through the region 
containing the scatterers.* 

These assumptions will be valid when the multiple scar'*ring problems 
meet both of the following requirements: 

1) The average distance between scatterers is much greater than both 
wavelength and the size of each scatterer. 

2) The number of scatterers is sufficiently small so that the total 
energy removed by them is small compared with the total energy in 
that portion of the incident wave striking the scattering medium. 
This means that for scatterers large compared to wavelength, the 
area masked by the scatterers looking in the direction of the incident 
wave should be very small compared to the total area normal to the 
incident wave direction ( Figure A-l). 

Under these assumptions, the total scattered field at an angle 0 from 
the hackscattering direction can be written 

N IE8|   i<f> n        n * 
,    R ~na n - 1      n 

(A-l) 

where IE I is the magnitude of the scattered far field from the n   particle in 

the direction shown, <p  is the phase angle introduced in the scattering process 
th 

by the n   particle, and r     is a unit vector perpendicular to the scattering 

direction, representing the polarization direction of the scattered E-field when 

the incident E-field is polarized in a direction a.   R  is the distance from the n n 
th 

* Physically, each time thf       dent wave strikes a particle, a portion 
of energy is removed from it and scattered in various directions.   Thus, the 
incident wave moving through the particle medium is attenuated.   This effect 
is ignored here, and energy is not conserved as a result. 
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particle to the observation point.   The total number of particles is N.   In general the 

particles may be all different; then IE  I, T    , and (f>   will be different for each ,. , n    ~na n particle. 

th 
The phase angle <j>   of the scattered field from the n    particle can be 

broken into two components; 

0   ■ 4>   + k n       n       o I in       sny (A-2) 

Here, r.   + r    is the total distance from any fixed plane perpendicular to the 
sn . 

incident field, to the center of the n    scatterer, and out to a fixed plane locally 
perpendicular to the scattered field.   The wave number of free space k   is 

defined as k   = 2ir/\ . '.''   is then the phase shift introduced bv the scatterer o o    n 
itself and is a function of the scatterer size, shape, orientation, material, and 
the incident wavelength. 
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th If the scattering cross section of the n    particle is desired for the 
received polarization state ß, then 

4TTRZ 

-na 
ßa 

a 

where ß is a unit vector representing the received polarization state and 

represents the electric field strength incident upon the particles. 

(A-3) 

E 
a 

In terms of this definition, the total scattering cross section of the col- 
lection of particles can be written, 

4irR? 

ßa E 
O! 

(A-4) 

or using Eq. (A-l), a     becomes 

ßa 

N        I .  i0    2        N N      /—i   / » i k   - <f>  \ 

n - i n - 1 m = l , A  »» (A-5) 

The approximation has been made here that R   * R_, i.e., at large distances n        T 
from the particles the distance to an individual particle may be replaced by a 
distance R   to the approximate center of the collection except in computing the 

phase factor $ . 

Equation (A-5) can be and is used to compute the total cross section 
from a fixed array of scatterers when r.   and r    are known.   But in *nost in sn 
situations the particles are randomly arranged and r.   + r    is a random 

th ln       tvti 

variable.   In particular when the n    particle is equally likely to be anywhere 
in the slab region of dimension d containing the scatterers (Figure A-l), and 
when d is large compared to wavelength X , then the second term of <j> , i.e., 

k I*J   + r    I» is 8aid t0 to uniformly distributed bef •   en 0 and 2ir.   This o y in      sn/ 
means that any value is equally likely for this number within the range 

• 
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0 < k f r,   + r   \ < 2TT.   Moreover, this random variable k fr.   + r    | is ol in       sny , o\ in       en/ 
independent of the scattering properties of the n    particle and may be averaged 
separately.   But when k (r    + r   \ is uniformly distributed as described, 

the average of e' f ° V * + '»)  " ^ fa* + '■») J is zero exCept when 
n - m.   Hence the average scattering cross section from a randomly 
arranged collection of particles may be obtained from Eq. (A-5) by Betting 
m = n, or 

(A-6) 

where the brackets <> indicate an average.   In general, <J.   varies with the 
pa 

orientation of the particle, and if any orientation is equally likely, then 

(%) 
indicates the scattering cross section averaged over all orientations or 

aspects of the n   particle. 

Eq 
If all the particles are identical so that (<rn  /- (an   > = (a„  > then 

. (A-6) »topllfies to become \*r     V"/    W 

<>)**<>>• ,A-7> 

Examples of the backscattering cross sections for particular collections 
of particles are given and discussed below. 

(b) Small Dielectric Spheres (Radar Echoes from Rain) 

Consider a collection of equally sized dielectric spheres of radii a 
and refractive index m ■   fc~, where c   is the relative dielectric constant of v r r 
the sphere material.   The radius a is considered small in terms of wavelength. 
The backscattering cross section of such a sphere in the low frequency region is 
a well known result and can be found, for example, in Eq. (A-7).' 

a = *n*(ntml)t Ik aV  . (A-8) '(TTTJW 
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The backscattering cross section of this particle does not depend upon particle 
orientation or aspect due to its rotational symmetry.   The polarization state of 
the backscattered field is the same as that of the incident field.   If the receiver 
polarization is the same as the transmitter polarization, then the cross section 
of such a collection of particles is 

4?ra (A-9) i 

This model is often employed to discuss the clutter effect on microwave 
radar by scattering from rain.   The particles are represented by spheres.   In 
this case it is inconvenient to determine N, the total number of raindrops in the 
radar beam.  A more meaningful parameter might be N - pV, where p is the 
average number of drops per unit volume.  In this case the volume would be that 
within a radar resolution cell at a distance R . 

Knowing m, the refractive index for fresh water as a function of frequency, 
Eq. (A-9) has been used to estimate the raindrop density p and the average drop 
size a of an approaching rainstorm. 

Typical values of raindrop diameter are 2a * 1-3 mm.   The value of p 
for rain is a function of the drop size.  A graph of the number of drops per 
cubic meter as a function of drop diameter 2a is shown in Figure A-2 for a 
typical rain shower. * For an Introduction to radar meteorology, see Battan2; 
an additional advanced treatment has been given by Bean and Dutton.' 

(c)  Half-Wave Thin Dipoles or Chaff 

Consider a random collection of thin perfectly conducting rods of 
length J ■ X /2.   The backscattering cross section of a Single such dipole 

lying in a plane normal to the direction of incidence and oriented with its axis 
along the incident polarization direction a has been given as approximately 

o » 0.75X* 
o 

(A-10) 

when the wire is copper and its radius is of the order of 0.0011.   In this case, 
however, the backscattering cross section changes with the orientation of the 
dipole; for example, when the dipole has its axis normal to the polarization 
direction of the incident wave, the backscattering cross section of the particle 
Is effectively zero.   Hence the backscattering cross section must be averaged 
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over all possible orientations, since it is assumed that in a random collection 
all orientations are equally likely.   This has been done in the literature,4's 

and the result is 

* 0.17X*     • 
o 

Hence the backscattering cross section of N such particles is 

\ot/ 
* 0.17X*N   . o 

(A-ll) 

(A-12) 
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If the receiving antenna is linearly polarized perpendicular to the trans- j 
mitting antenna, the cross section will be* j 

V     ,      o  >= tv      >K 0.057\2N   . (A-13) \ö + ff 2a/    3 \ota/ o 

Such a cloud of dipoles, often called chaff, is employed as a radar ir 
reflector for various purposes.   Thin strips or needles weigh much less than 
spheres of comparable dimensions; consequently, one can employ many more 
of them and obtain a much larger total cross section per given weight than with 
spheres. 

A cloud of these chaff particles has long been considered an effective 
means of concealing a military target or of confusing enemy radars.   This short 
wire scatterer presents the maximum cross section when its length is one-half 
the wavelength or any integral multiple of X /2 (the dipole is resonant at these 

lengths).   The one-half power bandwidth about the first resonant frequency of 
such a scatterer (averaged over all orientations) is approximately 12 percent 
of this frequency.s In order to make such a cloud of chaff effective over a 
wider band of frequencies, several dipole lengths are generally used in steps 
of about 12 percent starting from the longest length (the longest length corre- 
sponding to X /2 for the lowest desired frequency).   These different lengths then 

fill the frequency gap between the half-wave resonant frequency of the longest 
dipole and twice that frequency at which the longest dipole is again resonant.   At 
frequencies any higher, the dipoles resonate at harmonics, maintaining the 
cross section at a high level.   Then the total number N of particles contributing \ 
at a given frequency appearing in Eq. (A-12) actually represents the number of 
particles of a given length corresponding to X /2 for that frequency.   This analysis ' " o » 
of chaff is intended to be only of a very elementary level.   For a more detailed \ 
discussion and review of scattering from chaff, see Van Vleck and Block. *** 
A more detailed discussion of scattering from long, thin particles is given by 
Ruck. Bar rick, and Stuart.* 

*Thts "cross-polarized" backscattered component for the previous 
example employing spheres is zero, since spheres scatter back waves polarized 
only in the direction of the incident field. 

**For several comprehensive articles on the use and characteristics of 
dipole scatter* rs, see Proc. IEEE, 52,  1964, p. 449.   The papers in this 
issue are devoted entirely to Project West Ford. 
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A promising use of such chaff particles involves scatter communications. 
This potential was demonstrated by Project West Ford, * where thin copper 
dipoles were placed in orbit and dispersed to form a belt circling the earth. 
The belt was then used as a passive reflector at microwave frequencies, and 
beyond-the-horizon communication experiments were conducted.   The dipole 
lengths were all 1.78 cm and diameters were 0.00178 cm.   With a weight per 
dipole of only 40 fig, the measured scattering cross section per dipole averaged 
over all possible orientations was about 2 cm2 at the first resonant frequency. 
These half-wave dipoles were designed to be resonant at about 8000 MHz, i.e., 
X-band.   This frequency was considered optimum.   Below that frequency» 
atmospheric and ionospheric noise increases, while above that frequency attenua- 
tion due to the atmosphere and precipitation becomes significant. 

3.    Probability Distribution of Incoherent Cross Section 

If one observes the radar power (or scattering cross section) returned 
from a collection of scatterers which are individually moving in a random 
fashion, this power will vary as a function of time.   If this power or radar cross 
section is plotted on a linear scale as a function of time, one would expect to 
see the cross section oscillate randomly about an average value, remaining 
always positive, of course, as the scattering particles move about. *#  It is 
often useful to know the statistics of this signal.   A statistical model for the 
signal will be presented here.   Before squaring, Eq. (A-5) can be written as 

i*. N 
T. 

n = 1 
v ßa 

i<t> 
(A-14) 

* Ibid. 

**The same restrictions are assumed here as were discussed in 
Section (a) above.   In addition, the particles arc assumed to move very slowly 
with respect to the speed of light, and their velocities arc small enough so that 
the Doppler shift introduced by any moving particle is small compared to the 
monochromatic incident frequency.   Hence, the fluctuation in voltage at the 
receiving antenna will be a narrow-band signal. 
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and writing this equation in terms of its real and imaginary parts, 

J%00B+T+lJ%Bln*T =     Z,J%C0SK 
n — 1 

N    r-p 
+ i    E   7% 8in *n  * (A"15) 

n s 1 

Now <£>   varies randomly as a function of time due to the motion of the n 
particles and the changing distances r.   +r    in Eq. (A-2).   Thus, 0   is a 

in       sn n 
uniformly distributed random variable between 0 and 2ir.   Consequently, 
cos <t>  and sin 4>  are random variables having zero means, making each terra 

in the series a random variable. *   Even though each random series term is not 
necessarily Gaussian, the fundamental central limit theorem of statistics states 
that the sum of N random variables becomes a Gaussian random variable as N 
becomes very large.   Thus the first and second terms on the left side of the 
equation, representing the first and second sums on the right side, become 
Gaussian random variables.   Since the mean value of each series term is 
zero, the mean values of the Gaussian random variables on the left side are 
zero.   The mean square value of each term on the right side cf the equation is 

since «sos* $ y * ^sin* <t> y ■ -r . 

According to the central limit theorem,   la     cos $_ and la     sin $_ 

are both Gaussian random variables with zero means and variances 

\\B /*   EmP,oyln« th,s fect» ie l8 not ^fficult to show that Jo     is 

(A-16) 

» Note that la     may itself be a random variable, as in the ease of a 

dipole changing its orientation, or it may be a constant, as in the case of a 
sphere.   There is no difference in the results which follow. 
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random variable with a Rayleigh probability distribution, and oa   itself has an 
pa 

exponential distribution with probability density functions as follows: 

T 

fa»   1 = s /     \  e 'for 0 s  /a„ 
/"^ 

(A-17) 

and 

/Ja 

/'f\ 1 N(%>,     A        T 

W    N(%) * 
(A-18) 

Physically, Jo      is proportional to the received rectified field strength, 

whereas o    , the cross section, is proportional to the received power. 

From Eq. (A-18), one can calculate the mean and variance of the radar 
cross section for a random collection of identical scatterers, or 

and 

/ffj \ =■ N/JA , (this is identical to A-7) 

e)>-e>H<v>)'- 
The normalized variance is given by 

(A-19) 

(A-20) 

(A-21) 

Thus, one can see that the mean and variance of the total cross section increase 
with the number of scatterers as one would naturally expect.   The percent or 
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normalized variance, however, remains a constant independent of the number 
of scatterers.   Hence, the instantaneous radar echo does not become more 
steady or constant as the number of scatterers increases.* 

4.    Multiply Scattered Coherent Fields 

(a)  Theory 

Consider a plane wave normally incident upon a "slab" (Figure A-l) 
or region of thickness d containing many random scatterers.   Assume that the 
slab is infinitely high and wide and that only its thickness is finite.   As the 
incident wave enters this region, part of its energy is removed upon »triking 
each scatterer in the following ways: 

1) Part of the electromagnetic energy striking a scatterer may be | 
absorbed and converted to heat. If the scatterer is a perfect | 
conductor or perfect dielectric, no absorption takes place.                          | 

2) Part of the incident energy is scattered unequally (in general) 1 
in all directions. 

* Often, however, one does not observe the true target cross section 
fluctuation on a radar indicator.   If the radar system bandwidth from the 
receiving antenna to the radar indicator is less than the bandwidth of the 
scattered field, the rapid oscillatory behavior of the total radar cross section 
(due to the randomly moving scatterers) will be damped out by the system and 
only an average will be observed. 
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A wave will emerge to the right of the slab which should begin to look | 
like a plane wave far from the slab.   The intensity of this wave is less than that 
of the incident wave.   Another wave should be reflected to the left of the slab in | 
the direction from which the incident field came; this wave should also appear 1 
almost planar far to the left of the slab.   These fields will be called the coherent 
fields.   They will vary in magnitude and phase for each configuration of scat- 
terers.  In this section expressions will be given for the average coherent fields. 
(Besides the "coherent" field, there is the incoherent field which is scattered 
in all directions.   This incoherent field does not emerge as a plane wave, and 
its average value is zero in most cases.  A crude estimate of the intensity of the 
incoherent field, or average cross section, has been already treated in J 
Section 2.)   Since the coherent fields are planar, one cannot in general define | 
a scattering cross section because these fields do not decrease with increasing 
distance from the slab. 



Alternately, one can relate the average coherent plane wave emerging 
to the right of region 2 to the plane wave transmitted through a slab of thickness 
d of homogeneous partially absorbing material.   The average coherent field 
emerging to the left of region 2 is similarly related to a reflected plane wave 
from such a slab.   According to this analogy, there should be two plane coherent 
waves within the slab, one moving to the right and the other to the left.   Hence 
the actual scatterer region (region 2) can be replaced by a slab of material of 
the same thickness having permittivity e  and permeability ß   (both complex) 

r r 
for the purpose of analyzing the average coherent fields.   The equivalent 
permittivity e  and permeability /z   of the scatterer region will be given in this 

r r 
section.   Such a model then permits one to visualize and analyze the complicated 
multiple scattering problem in the same manner as reflection and transmission 
of a plane wave through a slab of homogeneous material. 

Interest in the multiple scattering of waves dates back as far as Lord 
Rayleigh. 6>7 Since that time there have been many treatises on various aspects 
of the problem.   Some of the most thorough treatments of multiple scattering in 
the recent literature are due to Twersky; consequently, his work will be used 
here.8 Since the theory is lengthy and complex, the results given here will in 
no way constitute a complete analysis of the problem.   Rather, the intuitive 
model discussed in the preceding paragraph will be used to explain Twersky's 
results.   The following restrictions and assumptions are necessary to obtain 
the results. 

1) The simplified geometry of Figure A-l is assumed. All scatterers 
are confined to the slab region shown, and a plane wave is normally 
incident upon the slab. 

2) The scatterers are randomly distributed in this slab in a uniform 
manner.   Thus, the probability that one given scatterer center lies 

a 
within a given volume element, dV is-~dV, where p is the scatterer 

N 
density, or the average number of scatterers per unit volume. 

3) The percentage volume occupied by the scatterers is assumed small 
in comparison with the volume of unoccupied space within the slab, 
i.e., the scatterer concentration is rare rather than dense.   The 
concentration should be rare enough that kR        » 1, where B o t - s 
R        is the average distance between two neighboring scatterers, 

L 
s and t, and-= << 1, where L is the largest dimension of either 

scatterer. 
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4)    All of the scatterers are assumed to be identical.   If the scattering I 
pattern of a scatterer varies with its orientation, it is assumed that 
an average pattern over all equally likely orientations is employed. 

Let the x-axis be chosen along the polarization direction of the incident 
plane wave, while the z-axis be chosen in the direction of propagation of the 
incident wave and normal to the slab.   As a consequence of 3) above, the 

E-field component polarized in the x-direction scattered by the j    scatterer 
when the x-polarized plane wave is incident upon it can be given by its ia; -zone 
expression: 

ik R. 
o js        .. > s        s * le /»    * \ * 

E    = Ex = E   -=-r f .[k   ,k. x (A-22) 
~ x~        x     R. xj\~s ~i/~ 

/*    A \ th 
where f , k   , k.   is called the complex scattering amplitude of the j    object 

in the scattering direction k   produced by an incident wave in the direction 

k   = z.   Written in this form, the scattering amplitude, f .(k  ,k J, is 

dimensionless and does not depend upon the distance from the object, but only 
upon the angular direction from the scatterer; thus it can be thought of as giving 

a scattering pattern for the object.   E is the incident field amplitude and R    is 
x th 

the distance from an arbitrary center in the j    object to an observation point. 
s /*■    * \ E   (any Cartesian component of the fields) and f .Ik    k) satisfy the scalar 
X XJ V**- 8•  w 1/ 

Helmholtz equation. 

The method of solution of the multiple scattering problem assumes that 
the solution for scattering from each of the objects taken alone is already known 
or determinable by other means; thus f ,/k'   , ß A Is known.   From this single- \ 

xjl~s ~iJ '* 
body solution, the multiple-body solution can be constructed basically as follows.8 

1 
I 

1)    The coherent components of the total field are assumed to be planar I 
and polarized in the x-direction.   They propagate in the plus and 
minus z-directions in regions 1 and 2 (corresponding to the incident | 
and reflected fields and the internal fields in terms of the analogous 
homogeneous slab problem) and in the plus z-direction in region 3 | 
(the field transmitted through the slab).   These components, after | 
averaging, are assumed to be independent of the x- and y-directions | 
(just as with the homogeneous slab) due to restriction (d) and due I 
to the averaging process in these directions. I 

74 



2) The total average coherent fields in all three regions are then shown 
to be expressible as integrals within region 2 over z, i.e., 
0 < z < d.   These integrals arise from averaging the total coherent 
fields over all possible particle positions in the z-direction.   The 
integrands contain the total average fields scattered L'om one of the 
identical particles at z = t, propagating in the plus or minus 
z-directions. 

3) The average excitation on a particle located at z = E, within region 2 
is assumed to come from the two average internal coherent plane 
waves travelling in the plus or minus z-directions.   Thus the total 
average scattered fields needed in the integrands of 2) above are 
postulated to come from these two internal coherent plane waves 
incident upon the typcial particle located at z = t, and multiplied by 
f ,/k  ,£ .\, where k. = ±z for these two average internal incident 
xjl ~s ~iJ ~i 

waves. 

4) Hence the average coherent multiple scattered plane waves are 
shown to satisfy integral equations.   These integral equations are 
easily reduced to differential equations which have the same form 
as the scalar second order differential equation for a scalar wave 
in one dimension.   However, the new wave number for the scatterer 
is now given by 

k2 - 
s 

f   (z, z) + f   (-z, z) 
X    **w    *"v         X       ***    *** o     k' 

f   (Z,Z)   -f   (-Z.Z) x ~ ~       x   ~ --• 

(A-23) 

further, the scatterer region can be assigned a relative permittivity 
€    and permeability p    as follows: 

k2 
s k e   M 

o rs rs 

where 

t     = 1 + 
rs 22 (lu.z) + f (-z ,zTl 

k3 L  — «J 
(A-24) 

,    2irp rr. * ».    t, - •*. i 
/i     = 1 +—-  f U,z)  - f(-z,z) 
rs L-3 

(A-25) 
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Since it is assumed that all particles are identical, the j subscript 
from the scattering amplitudes has been dropped. As before, p 
represents the average particle density (number of scatterers per 
unit volume) .* Particular examples of multiple scatterers will be 
given subsequently, and the resulting scatterer region permittivity 
and permeability will be derived. Before passing it should be noted 
that the scattering amplitudes appearing in the above equations are 
complex, in general.   Thus the wave number k   has an imaginary 

s 
part which gives rise to attenuation of the waves inside the medium. 
This attenuation of the coherent plane waves is due to heat losses 
within the particles and scattexing of a portion of the incident 
energy into bistatic directions. 

5)     The resulting linear second-order differential equation for the 
coherent fields with wave number k   in region 2 and k   in regions 

1 and 3 is easily solved.   As mentioned previously, the coherent 
fields are plane waves independent of x and y, and vary only along 
the z-direction.   Boundary conditions are obtained at the two faces 
bounding the scatterers, and these correspond to the boundary condi- 
tions for a slab of homogeneous material having wave number k 

Thus the solutions for the average coherent fields in the three regions 
ik z 

for an incident plane wave FT e       are: 

i       i ik Z* 
E   = E e   ° x, for z < 0 (Incident Field), •v x ~ 

/ R\ i   / '2k d\  ~ik z 

(E   )= -E QU - e     8 je    ° , for z * 0 (Reflected Field), 
\ X/ X ' (A-26) 

s | 
j 

* Physically, f (z, z) is the forward scattering amplitude (it represents x ~ ~ 
the field scattered from an isolated object into the forward direction) whereas 
f (-? , z) is the backscattering amplitude.   These quantities are simply related 

to the forward and backscattering cross sections (x-polaristation) as follows: 

4  I      •»   *   I* 4   i        «   «   l* 
<r   (ff) ■— f (z.z)    anda    (0) = —  f (-z,z)      . 

XX , j   | X  ~   <-   I XX . j   I X     •*   *   | k* I * ~ -'     ~     k* 
o o 

i 

j 

• if 
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E,NT) . E1 

v   X      / X 

ik z -ik (z - d)  + ik d 
(1 - Q)e   S   + Qe     S S 

for 0 ^ z « d    (Internal Fields), (A-27) 

'  T\        .   ik d + ik (z - d) 
E   ) = E1 e   S ° , for z > d (Transmitted Field)    (A-28) 

where 

Q = 

2ffp    -, A       A . 

0  
k 

n 5   ,   27TP ,   . A    *. 
1   + —- + * f     Z,Z 

k .3     X  
o      k° o 

(A-29) 

It can be seen that the average coherent electric fields tangent to the 
slab interfaces satisfy the usual boundary conditions at an interface, i.e., 

E' + 
X «a = PNf] z = 0     |_x Jz = 0 ., and   E INT] _   £T 

x _Jz = d     _ x_ z = d ' 

It should be noted that because of restriction (c), the parameter Q above 
will be small in absolute value compared to unity, i.e., the particle density is 

sparse. *   This means that-2? f (z , z) and -I£ f (-z, z) are small in magnitude 
k3    x  k3    x   ~ *, 

o ö 
compared to unity, and consequently the parameter Q may be simplified under 
these restrictions to 

* The restriction to sparse particle concentrations is violated very 
2jrp 

rarely in practical applications.   For example, the quantities—r-f t z, z) and 

2ltO A     * 
 f (-z,z) are small even for the densest rainstorm at both microwave and 
k>    x   ~~ 

o 
optical frequencies.   Models of gases, where the scat'ering particles are the 
gas molecules, also have extremely sparse concentrations.   When the particles 
are large compared to wavelength, these variables become even smaller in 
general. 
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Q «JLf  (-z,z) 
1,3   X     ~   ~ 

(A-30) 

(b) Simplification of Results and Relationship to Extinction 
or Total Cross Section 

The fact that the scatterer concentration was assumed to be sparse 
permits considerable simplification for the effective wave number within the 

27TÖ  -     A    A 27TP A    A 

medium.   One can then neglect higher powers in —— f (z, z) and —— f (-z, z). 
Using this simplification k3   X ~ ~ k3    X 

k  «k   A+— MM) *k +i2.f (2,2) 
S 0/ 3     X ~   ~ 0        ,2     X  <-   ~ 

(A-31) 

Of the results derived in the previous section, the quantity of most 
practical interest is the main coherent wave propagating forward through the 
scatterer medium.   This wave is attenuated as it passes through the scatterer 
medium, and it is often desirable to know this attenuation in solving radio 
communication or radar problems (e.g., radar wave propagation through a 
rainstorm or chaff).   This forward wave is the first term of Eq. (A-27), and 
when the value for k  of Eq. (A-31) is employed, it becomes s 

«H ik z s 

= E   exp 
X 

o 

2irp imfyz.g 
7A-32) I ■ 

Hence the imaginary part of the forward scattering amplitude represents the 
attenuation factor of this wave as it moves through the medium.   Obviously, 
the imaginary part of f (z, z) must always be positive in a passive medium; 

otherwise, the wave would increase in magnitude rather than attenuate, which 
violates conservation of energy. 

The imaginary part of the forward scattering amplitude is related to 
the power removed from the incident wave by the forward scattering theorem. 
The total scattering cross section for an isolated particle is defined as 

# 
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y«w*-~i\$a-il) dO (A-33) 

This quantity physically gives the total power scattered by a particle into all 
directions divided by the power density in the incident wave striking it (dJ2 is an 
element of solid angle in the scattering direction k  |,   In a similar manner, one 

~s/ 
can define an absorption cross section c    as the power absorbed by the particle 

and converted into heat divided by the incident power density.   Then the total 
power removed from the incident wave upon striking the particle is equal to the 
sum of the total scattered power and the absorbed power, and the related cross 
section, 

aE " ffT + aA 
(A-34) 

is called the extinction cross section.   It gives the total power removed from the 
incident field divided by the incident power density striking the given particle. 
The cross section theorem'1 states that 

4ir *   A 

<r_ = — Imf f(z,z) | 
lv 

0 

(A-35) 

(c)  Alternative Derivation of Attenuation Coefficient 
of Forward-Propagating Wa vc 

An often-used alternative analysis can be used to find the attenuation 
of a plane wave propagating through a region containing many scatterers on the 
basis of the extinguished power or extinction cross section o_.   This method 

Jfcrf 

has the advantage that it is easily developed and understood.   It gives the same 
result as that formerly derived from Eq. (A-32), as will be shown below, and 
thus offers reassurance of the correctness of the previous results, especially 
since the theoretical basis for the development below is different. 

Consider a slab of volume $V - \Y\7. containing identical scatterers 
( Figure A-3).   Let a total power P,   strike the slab normally from the left, 

and a total power P      leave the slab toward the right.   Then the total power 

removed by the scatterers within the slab is given by 
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"in out 

FIGURE A-3. GEOMETRY USED IN ESTIMATING PLANE WAVE 
ATTENUATION IN PASSAGE THROUGH A MEDIUM CONTAIN- 
ING MANY IDENTICAL SCATTERERS 

-*P=Pout-Pin'AN<rES  • 
(A-36) 

where S is the incident power density.   This result is evident, since ?   s is the 

total power removed from the incident beam (due to scattering and absorption) 
AP by a single scatterer according to the definition of a„.  Now-==-is the increment 

in power density AS, thus 

AP     AN      e »AS ■ - —— 3 ——a_ S - 
XY     XY   E°     XYAZ   E 

dN   a„ SAZ * |~(rE S&Z  . (A-37) 

AN 
But«—is the number of particles par unit volume of the slab and is equal to p 

as defined previously.   Taking limits and integrating both sides, one obtains 

so 
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and 

S = S e 
o 

■*v 

Employing the cross section theorem then 

S = S  exp(~4irp Im 0       U2 
o 

A       A 

f (z,z) x   ~   ~ (A-38) 

These last two equations give the power density in a wave propagating - 
through a scatterer region where the initial power density at z = 0 is S . 

In comparison, the power density in the coherent wave of Eq. (A-32) is 
given by 

A eJ±llmUl 
W Lx (A-39) 

where n is the free space impedance.   The results are identical, confirming the 

former theory«   The former heory is more useful because it gives the proper 
phase relationships and effective wave number k  in the scatterer medium. 

The development given above is more elementary and intuitive, and was first 
set forth by Lord Rayleigh.8«7 

The results derived in this section, especially those for the attenuation 
of a wave propagating through a multiple scatterer region, are often used in 
practice even though the scatterer region may not be a slab.   Propagation 
through rainstorms, clouds of water droplets or chaff, and even light wave 
propagation through an atmosphere of dust or molecular scatterers is analyzed 
on this basis.   Several examples are given in the following paragraphs. 

(d) Small Dielectric Spherical Scatterers 

The forward scattering amplitude for a sphere of radius "a" small 
compared with wavelength X   with refractive index m is given by' 

tjz.z) = 
x ~- <■». 

2^(ka>  , 
ml ♦ 2 V ° / 

<A-40) 
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so long as the conditions k a < 1 and k a Iml < 1 are met.   From Eq. (A-31), 
o o 

(A-35), and (A-40), the wave number and power attenuation constant are 

1 + 2?rpa3 

mz + 2 
(A-41) 

and 

4irp 

~V 
o 

Im f (z, z )   ■ 47rpa3k 
x ~  "v_J 

(A-42) 

It can be seen from Eq. (A-42) that the attenuation constant is zero unless the 
refractive index m is complex.   If the refractive index is real, there is no 
attenuation of the incident wave according to the theory, even though some 
bistatic scattering by the drops takes place.   Thus in the low frequency limit, 
these results show that the only mechanism responsible for attenuation is 
absorption of the incident energy by the drops. 

For raindrops at microwave frequencies, a typical value for m is 
m ■ 7.14 + i 2.89 at 0"C and X = 3.21 cm.3   Using this value and assuming 
an average drop radius a = 1 mm, and p .- 100 drops/m3, then* 

4tp 

IF 
Im [',<£•£>] ■ 6.1 v lcr3 nepers/km = 0.0652 dB/n. mi.     (A-43) 

Thus a radar wave at this frequency will lose one-half of its initial power 
after traveling through the rain a distance of 46 n.mi.   If the frequency is less, 

is aven smaller due to k 
rnf-J.) 

i.e., at radio frequencies, this attenuation constant 

on the right side of (A-41) becoming smaller and Im 
m\ + *J 

becoming smaller. 

Hence one can say that a plane wave at C-band frequencies and lower is atten- 

uated little bv rain or bv clouds.  At X - 1 cm (i.e., K -band), k a "—for 
a o      2 

drop radius a = 1 mm.   The particle is no longer strictly in the low frequency 
region by virtue of its size, and Eq. (A-40) is no longer strictly valid.   There 

* At this wavelength, drop size, and refractive index, kam "l Vj, and 

hence the approximation (A-40) is not strictly valid.   The results here rrs not 
in error by much, however: the error is approximately 18 percent. 
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is an imaginary part of f  which does not depend upon the refractive index hav- 

ing at imaginary part.   This means that the particle is sufficiently large that 
part of the energy is being removed from the incident wave and scattered in 
other directions.   This is in addition to that portion being absorbed by the 
particle and converted to heat; this latter portion is due to the complex refrac- 
tive index. In fact, as the particle becomes bigger (i.e., k a > 5), the 

energy removed by scattering is far greater than that absorbed and converted 
to heat, as will be shown in the next seciion.   Hence, raindrops can be con- 
sidered small only up to K -band frequencies, permitting use of Eq. (A-40). 

H. 

(e) Large Spherical Scatterers 

For large spherical scatterers where k a » 1 (a is the sphere 

radius), the forward scattering amplitude is independent of the sphere 
material.J The quantity f (z, «;) is given there as -Hit). 

x *» **■ 

M2 

X -   - 
(A-44) 

Then the wave number and power attenuation constant become 

k = k 
8       0 

1 f i 
irpa (,\-r>) 

and 

J£i»Fu«.s7|. aw 
k*    *-* ~ ~-J 

I A-40) 

This example presents the other extreme to the preceding section. 
Here the significant attenuation mechanism is scattering by the particles rather 
than absorption.   Even though absorption can and does take place in 'arge lossy 
spheres, its contribution to the power removed from the incident wave is so 
small compered to that removed by scattering as to be insignificant.   Hence, 
the entire forward scattering amplitude is pure imaginary and contributes 
toward attenuation. 
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In the preceding section, raindrops appeared small at microwave fre- 
quencies [X   > 3 cm \.   At optical and infrared frequencies, however, these 

same drops appear large so that the results of this section may be used to 
predict attenuation.   At an average drop radius of a = 1 mm and p = 100 
drops/m3, the attenuation constant becomes 

if^Imlf (z,z)l  = 0.628 nepers/km * 5.06 dB/n.mi. (A-47) 

In contrast to the preceding section, an optical or infrared wave (any frequency 
such that k a > 100) will attenuate to 10 percent of its original power (10 dB) 

after travelling only 2 n. mi. through rain.   This is easily confirmed visually. 

The primary or coherent wave from an object can be rapidly attenuated 
at optical frequencies in a medium such as the rain in the above example. 
Thus one cannot see the sun on a rainy day.   Nonetheless, the light level striking 
the ground may still be fairly high; this light level is due entirely to the 
incoherent multiple scattering.   This example shows that there are cases where 
the incoherent scattered power from multiple scatterers may be much larger 
than the coherent field such as that containing the sun's image. 

(f) Half-Wave Dipole Scatterers or Chaff 

As one final example, consider the chaff or hnif-wave dipole scat- 
terers of Section 1, (c).   A single such dipole (perfectly conducting thin 
cylinder of length-to-radius ratio of 0.001) optimally oriented gives the same 
back and forward scattering cross sections.   The scattering amplitudes become 

f (z,z) = f (-2,2) * 1.54  . (A-48) 
X **   "*"' X     ** *** 

This example, however, represents a case where the scattering amplitude 
depends upon the particle orientation.   If the particles are arranged completely 
randomly, then f (z , z) must be averaged over all possible dipole orientations x ~- ~ 
to obtain / f (z, z )\ for a typical dipole.   When this is done 

\ x <*- ~ / 

/f(z,z)N   =/f(-z,z^    *0.73   . (A-49) 
\x ~ ~/ \x   ~ «-/ 
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From this the average wave number and attenuation constant are 

(ks> " ko 
1 +^x 0.73 
L      k3 

o 

(A-50) 

4irp 
"Im [7f(z,z)> = 0 (A-51) 

This example shows that for an ideal half-wave dipole, the attenuation of the 
coherent wave is negligible.   However, in practice the dipoles are not ideal and 
there is some loss produced by the induced currents; this loss plus a small 
reactive term due to finite dipole radius when properly taken into account will 
introduce an imaginary term to f( z , z) and some small attenuation will take 
place. 
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Appendix B 

ROUGH SURFACE SCATTERING 
BASED ON SPECULAR POINT THEORY 

1.    Introduction 

Two approaches have been employed for the solution of scattering from 
very rough surfaces* in the past.   The first begins with a form of the physical 
optics integral, alternately referred to as the Kirchhoff approximation.   In 
order to evaluate this integral, it is necessary to approximate a complicated 
factor in the integrand which involves local surface slopes, angle of incidence, 
and Fresnel reflection coefficients.   Several recent analyses, such as that of 
Hagfors,' who treats baekscattering, and those of Semenov2 and Stogryn,3 who 
deal with bistatic scattering, justify the removal of this factor from the inte- 
grand as a constant by virtue of the stationary phase principle.   In other words, 
one assumes at the outset that all scattering comes from local areas which are 
oriented in such a manner as to specularly reflect into the desired scattering 
direction.   The factor is then evaluated at the slopes of these specular or sta- 
tionary phase points.   The remaining integral in these analyses, whose inte- 
grand now consists entirely of an exponential factor, is not solved by this 
stationary phase approach.   The integral for the scattered power is evaluated 
after the averaging process, and hence the stationary phase principle, used to 
approximate the first factor, is not employed after all to solve the integral. 
Nonetheless, the process of averaging under the integral sign can be justified 
mathematically.   Hence, while this autocorrelation approach, a.s referred to by 
Hagfors, is correct, it does not provide the needed physical interpretation of 
the scattering process. 

Recently, Muhleman4 analyzed rough surface scattering by what he 
termed a ray optics approach.   This model approximates the random surface 
by a patchwork of planar facets.   The model is based solely upon energy or 
power reflection, and ignores the role of the phase angle of the scattered 
field.   The model postulates that all scattering takes place from those facets 
which are in a direction to specularly reflect.   While the results compare with 
those of the autocorrelation approach and the technique provides needed physi- 
cal insight into the scattering process, it leaves much to be desired as far as 
rigor.   The stationary phase approach shows that the intensity of the scattered 
field is proportional to the principal radii of curvature at tlv   • "'-•'lar point 
and the number of such points; none of these quantities is v    -        1 the ray 
optics approach nor is polarization information for bistatic scattering. 

* Very rough is the term often used to denote surfaces whose rms rough- 
ness height is considerably greater than wavelength. 
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The physical optics and geometrical or ray optics approach must yield 
identical results in the high frequency limit.   It should be possible to derive a 
geometrical optics formulation from the physical optics integral which places 
in evidence the important physical quantities of the rough surface which pro- 
duce the scattering.   Kodis5 has done exactly this.   However, instead of 
averaging the integral, he evaluates it entirely by the stationary phase method. 
As one intuitively expects, he rigorously demonstrates that the scattering cross 
section from any very rough, but locally continuous curving surface, is propor- 
tional to the average number of specular points and the average of the principal 
radii of curvature at the specular points. 1 

The purpose of this paper is to begin with Kodis' results for one- and two- 
dimensionally rough surfaces and derive general expressions for the average 
number of specular points, and the average curvature at the specular points. 
These quantities of themselves provide insight into the surface properties which 
affect the scattered field.   When these factors are used in the expressions for 
the scattering cross sections, we obtain the same result here as the autocorrela- 
tion and the ray optics techniques.   This therefore justifies the partial use of the 
stationary phase principle, as discussed before.   The results of Kodis will be 
generalized here to apply to.bistatic as well as backscattering, and to homo- 
geneous surface materials (with relative constitutive constants c , p \ as well 
as perfectly conducting. ' 

Longuet-Higgins6 has derived expressions for the average number of 
specular points when the surface height is a Gaussian variable and when one 
examines an infinitely long surface from source and observation points at a 
finite distance from the mean surface.   The results derived here apply to sur- 
faces of finite extent and where the source and observation points much further 
from the surface than the mean roughness correlation length.   Moreover, our 
results are not only simpler in form, but are more general in that they apply to 
non-Gaussian surfaces as well. 

(a)  One-Dimensionally Rough Surface t, (x) 

Consider a surface which is square with side length L, which is rough 
in the x-direction only, and whose mean plane coincides with the z « 0 plane 
{ Figure B-l).   The plane of incidence is taken to be the x-z plane, and we 
consider scattering only in this plane (i.e., 0   = 0).   Then the average bistatic 
cross section per unit surface area isr ' 
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FIGURE B-l.   ROUGH SURFACE AND SCATTERING GEOMETRICS 

where 

L = side length of illuminated area. 

n    = average number of specular ridges on the corrugated surface 
per unit length. 

< ML l> = averaged absolute value of radius of curvature at the specular 
ridge. 

R,,{ 0 = reflection coefficient from an infinite plane tangent to the 
surface at a specular ridge for incident and scattered polari- 
zation states,   a corresponds here to the vertical and hori- 
zontal states, w and hh.   These reflection coefficients are 
derived in the Appendix for a homogeneous surface and given 
in Eq. (B-29) and (B-30).   Note that R    and R    are zero 

because scattering is in the incidence plane, i.e., 0   = 0. 
s 

1 = local angle of incidence, derived in the Appendix and given in 
Eq. (B-3). 

The angle of incidence is taken positive if scattering is forward and 
negative if it is backward. 
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(b)   Two-Dimensionally Rough Surface t,(x,y) 

The scattering geometry is shown in Figure B-l, but for this surface 
whose height varies in the ^-direction also, we consider scattering at arbitrary 
polar angles d , <p .   The average bistatic cross section per unit surface area , s      s 
IS: 

iv       A        i   | £V
y (B-2) 

where 

n    = average number of specular points per unit area. 

< K l Tz l> - average absolute value of product of principal radii of curva- 
ture (or reciprocal of Gaussian curvature) at specular 
point. 

R.JO = reflection coefficient from infinite plane tangent to the sur- 
face at the specular points for incident (right subscript) and 
scattered (left subscript) polarization states.   £ and r, refer 
to the horizontal and vertical states h and/or v.   They are 
derived in the Appendix for a homogeneous surface.   They are 
given in Eq.  (B-29) and (B-30) for bistatic scattering and Eq. 
(B-31) for backscattering. 

i - local angle of incidence at specular point as derived in the 
Appendix and given below in terms of its cosine: 

cos i ■u sin 0. sin 0   cos <p   + cos 0. cos 0 
iss is 

The above equations for the scattering cross sections are consistent with 
what one expects from a surface made up of many specular points having smooth 
curvatures.   Equation (B-2), without the average sign on ft jtjl and without 
n , is the well known expression for the bistatic scattering cross section of any 

simple curved surface having principal radii of curvature {,, £2 at the specular 
point.   Hence, without ever having gone through the stationary phase analysis, 
one should be able to appreciate and understand the use of Eq. (B-l) and (B-2) 
as the basis for rough surface scattering. 

The restrictions under which the above equations are valid are the 
following: 
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1) k p > 1, i. e., the radius of curvature everywhere on the surface 

is much greater than wavelength.   Hence, the tangent plane approxi- 
mation can be applied. 

2) Shadowing and multiple scattering between various parts of the 
surface are neglected. 

3) k"h2 » 1, i.e., the mean square surface height h2, is much greater 

than wavelength.   This permits us to sum the power from each 
specular point incoherently. 

4) <(9£/3x)2> = <(8t,/dy)2>, i.e., the surface roughness is isotropic 
in nature.   This restriction is not necessary to obtain the solution 
but is employed here for simplicity. 

2.    One-Dimensionally Rough Surface £(x) 

(a) Average Number of Specular Ridges 

The slope of the surface t,   (or <<> Jdx) at the specular ridge is 

tany; denote it t,     .   The problem here is then similar to the better known 

zero-crossing problem of communication theory, i.e., to find the average 
number of points per length of surface where the random variables t,   - t, 

passes through zero.   The most general solution to this problem is attributed 
to Kac and is found in Rice.7 We shall briefly retrace Rice's technique, 
because it will aid in understanding the more complicated two-dimensional 
surface case. 

Let p/t, tt,   ,x\ be the joint probability density function of the slope and 
\ X    XX    I 

second derivative random variables, &  and L   , at surface point x.   Assume 
X XX 

for the moment that the quantity £   - t,      passes through zero with positive 
A ASp 

rate of change, i.e., 4     > 0, in the interval between Xj and x, + dx.   For dx 
AA 

sufficiently small, the curve in this interval can be considered linear with x 
t   - £ 

X XSP 
intercept equal to Xj £.   Then, since by hypothesis this intercept falls 

*xx 
within the defined interval, the following inequality holds 

x, < x, - 
xsp 

< x, + dx i   • 
'XX 
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from which it follows that the range of interest of the random variable t,   is 
given by * f 

xx 'xsp       x       xsp I 
i 

while that of t,     is i xx I 
■J 

0 < t      < « . I xx I 

The probability that the curve passes through zero is then found by integrating 
P(V Scx;X0 °ver this range; i,e" 

00 xsp 
p+ « f  d;     f dl, P/; ,C   ;xA 

0     ^ It  dx +1      x" x ^  ' "xx xsp 

oo 

Wdx/  Scr^W1»*)** • 

Likewise the probability P   of the quantitv t,   - t,      passing through zero with x      xsp 
a negative rate of change (i.e., i     > Oj is easily established, and assuming 

p/t, , t,   ;x\ is symmetric in £,   , the total probability of a zero crossing in dx 
%     A        AA       f AA 

lä 

P = »P+ + P-»dx/   l^jP^p.^d^  . (B-4) 

Hence, we see that the probability of having a zero of i   - «;      varies •x     xsp 
directly with the length of the surface dx for short intervals.   This is a ührirac- 
teristic of Poisson distributed everts, and it is readily established from the 
theory of Poisson processes that the average number of zeros per unit length 
of the surface n   is defined as 

P - nLdx . (B-5) 
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Comparison of Eq. (B-4) and (B-5) gives the desired relationship for the 
average number of specular points per unit surface length.   The integral can 
be written in a more meaningful form and one more useful later by expressing 
the joint probability as the product of the single density in £   and the conditional 
density off     given I, xx xsp 

nL = P(Scsp) /   Sex P(SaAsp:X,)d;xx (B-6) 

This form places in evidence an important fact:   The average number of 
specular points on a rough surface is directly proportional to the probability 
density of the surface slope t,      at the specular point, as one intuitively would 
expect. 

As a specific and commonly used example, consider the Gaussian sur- 
face height joint probability density function 

pu.n - 
2irh2[l -p2(r)]/2 

exp J- ;
2 - 2p(r)U* + t,'2 

2h2[l - p2(r)] 
(B-7) 

where h2 - <£2>is the mean square surface height, and p(r) is the correlation 
coefficient for the surface height variables £<x) and £(x') separated by hori- 
zontal distance r.   For the one dimensional surface, r - !x - x'l.   The defini- 
tion of p( r) is 

P(r) =~<;(x)Ux + r)>  . 
h2 

Near r = 0, p(r) must be parabolic, since the presence of a linear term in r 
results in an infinite mean square slope, which means that the probability 
density functions in t,   and t,    do not exist so that we cannot determine n  . 

A AA JLt 

For the sake of example, let us assume that the second and third terms in the 
expansion of p( r) follow a Gaussian model, i.e., 

p(r) « expf-r2/*2} * 1 - -£ + 4" 
I2      2/1 

Here t is termed the correlation length.   Then the following averages for the 
slopes may be established: 

m 



vx)yx1) =^Lim 
Aj-0 

l(x + Aj)  - Uxj' 
Ai 

Lim 
AY— 0 _ 

4(x' + A2)- Ux') 

A2 

= Lim ~-(ux+A!)Ux' + A2) 
A^Ar-O^ 

-Ux + A,)U«*) - C(x' + A2K(x) + Ux)4(x')) 

h2    * 
= Lim      -r-T- p(x-x* + At - A2) 

AiA2-0 ^2 I 

- p(x - x" - Ai)  - p(x - x' + A2) 

+ p(x-x')    . 

Expanding the individual terms into series in powers of At and A2 and taking 
the limit shown, we obtain 

<v>v*'>> - T l - 2 
(X - X 

~ P(r)    . 

From this it follows that the mean square slope s3 in the x-direction is 

<**>> ■ 7 (B-8a) 

Likewise, the following averages may be established: 

r?   »A1 <x)\ = —, andA (x);   (x)\ * 0 . 
XX      \ XX      / a \ X       *XX      / 

(B-8b,c) 

Notice that the first and second surface derivatives, i  and (   , at a given 
point x are uncorrelated. 

Now, the fact that t, and & ' are Gaussian provides us with the well 
known result that all its derivatives are Gaussian, since any linear operation, 
such as differentiation, on a Gaussian variable yields another Gaussian ran- 
dorn variable.   Further, since the correlation coefficient between I  and I   , 

x       *xx 
at the same surface point x is zero, these Gaussian variables are statistically 
independent.   The conditional density can thus be written 
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I 
I 

»ft»V) -p(t») 
The integral in Eq. ( B-6) for the Gaussian model when evaluated i 
n   becomes 

Li 

ri 
XX xsp 

n,  -  ■ cxp ■ 
L        7TS 

X 
2s 

X 

w is V     /—, 
XXV t 

and 

irt 
-exp 

-tan'v 

2s 2 
B-9) 

(b) Average Curvature at Specular Ridges 

A result of the stationary phase analysis was the determination that 
the slope at a specular point is £       = tan y, where y is defined in terms of the 

incidence and scattering angles in Eq. (B-27).   Hence, using this prior knowl- 
edge of the slope at these specular ridges, we wish to determine their average 
radius of curvature.   Any treatment of curves, such as Taylor8 or Struik,'' will 
show that the radius of curvature of a curve £(x) which lies within a plane 
(the y - 0 plane in this case) is 

v, (' * W 
xx 

To find the average value of "?   at a specular point, we substitute £       = tan y 

for C   and average over the random variable £,   .   To perform a strict averaging 

of 7—, we must multiply by pfc    |j»     \ and integrate over the range 
'XX 

XX 
<   » To conditional probability density function must be used because 

we have prior knowledge of £   at the specular points.   Unfortunately, however, 
x j 

the resulting integral does not converge, due to the singularity of n—r at the 
14. xx 

origin.   Therefore, we employ the following approximation to obtain an estimate 
of the average curvature: 

dg) 
i 

<IU> 
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Then an estimate of the average radius of curvature at the specular point 
becomes 

L       xspj 

or 

<m> = sec* y (B-10) 

/ xx lp( l !«__,) a; XX xspj XX 

Obviously, the above procedure is not exact, and we have no ready quantitative 
measure of error.   The approximation becomes better as we exclude the region 
around t,     = 0, the neighborhood of the singular point.   Actually this neighbor- 

hood around the origin has already been excluded implicitly in the application of 
the stationary phase principle.   The basis of the stationary phase technique is 
the expansion of the argument of the exponential iKt, into a series about the 
specular point x    at which the second or linear term vanishes; i. e., 

sp 

Ki(x)  = KUx   \±~K;    (X   \
2
±-LK;      (x   \(x-x   ,)s+..., 

V sp;    21     *xx\, spy     3!       xxxV spA        sp^ 
(B-ll) 

1 
K, being proportional to \  ' 

The stationary phase technique is applicable when K is large and when 
%   (x   \\B not too small, for then the cubic and all higher order terms can be 

neglected.   If, on the other hand, t,    (x   \ is very small, the cubic term is 

dominant, and one does not obtain the result of Eq. (B-l) for the scattering 
width written in terms of the radius of curvature.   Hence, the region at and 
around the singular point 4     =0 has already been excluded in obtaining 
Eq. (B-l). ** 

Averaging t,    instead of its reciprocal is equivalent to assigning a non- 
AA 

zero average value to the coefficient of the quadratic term of Eq. (B-ll) before 
integrating.   This insures that the quadratic term will always determine the 
value of the integral for sufficiently large K.   Although we have no exact error 
bounds, we should not expect any error incurred to be excessive.   This expecta- 
tion is borne out by the identity of the resulting scattering cross section with 
those derived using two other techniques. 

96 



For the Gaussian surface model, Eq. ( B-10) can be written immediately 
because the integral in the denominator has been evaluated in the preceding 
section. 

<W>-     T 
"K_ sec y 
2        T) xx. 

(B-12) 

(c) Average Scattering Cross Sections per Unit Area 

Now that we have determined general expressions for a number of 
specular ridges per unit length, given in Eq. (B-6), and the average curvature 
at the specular point, from Eq. (B-10), these expressions can be substituted 
into Eq. (B-l) to give the average scattering cross section per unit surface 
area.   The integrals in the first two equations cancel exactly in the substitution 
process. 

/ 0   + 0 ' 
(r°   = k L cosl —-—-'=°"3 

Ho V      2 sec3 y p( tan y) 
(9. + 0 \ 
'  1        s' 

iV 
(B-13) 

where p(£ \ is the probability density function for one-dimensional surface slope 

t, .   In particular, for the Gaussian model, the bistatic (bistatic here means 

within the y = 0 plane) and backscattering cross sections respectively become 

U 

k L        IB   + 0 \ 
o          I i       s|       3 
 -cosI— / sec0ye 

tan'y 

17" 
\/27rs 

R 
'\+ V 

u (B-14a) 

and 

tan2 0 
i 

w hh 

k L 2s2 

 see5 0 e 
27TS 

I R( 0) | (B-14b) 

where R(0) is merely the Fresnel reflection coefficient at normal incidence. 
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3.    Two-Dimensionally Rough Surface t,(x,y) 

(a)  Average Number of Specular Points 

In order to simplify the analysis, let us choose the x and y_axes for 
this section such that the plane defined by the normal to the surface at specular 
point and the x axis coincides with the x-z plane ( Figure B-2).   This may be 

Z 

♦•Y 

REGION CONTAINING 
SPECULAR POINT 

SPECULAR POINT; SURFACE 
SLOPES ARE £       = ton y , 
r        = 0 p 

FIGURE B-2.   COORDINATE SYSTEM ROTATED ABOUT z-AXIS 
SO THAT BISECTOR OF INCIDENCE AND SCATTERING 
DIRECTIONS {i.e., SURFACE NORMAL AT SPECULAR 
POINT) LIES IN x-z PLANE 

done with no loss of generality because the surface roughness is isotropic and 
the surface statistics are invariant under a rotation of the x-y_ axes.   Then the 
slopes of the surface at the specular point in the x- and ^-directions become 
t   - tan Y and £   = 0.   Denote these particular values by t,      and t,     .   The 
*x *y J "xsp        *ysp 
analysis here proceeds in the same manner as for the one-dimensionally rough 
surface. 

Define p/T, ,t, ,t,    ,t,    ,4   ;x,y\ as the joint probability of the surface 
V x   y   xx   xy   yy    J) 

first and second derivatives in the x- and y-directions.   In order for the 
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surface to have a specular point with the proper slopes t      and L      , there 
xsp ysp 

must exist a point somewhere in the region Xj, Xj + dx and ylt yt + dy, where 
t,    - t,      and £,    - t,      both pass through zero.   If the increments dx, dy are 
x       xsp y       ysp J 

sufficiently small, the slope surface t, (x,y) in this increment can be considered 
A 

nearly planar and can be written in terms of its first series terms: 

^(x, + ^ y, + Ay) - yxliyi)   + ^xx(X1,y1)Ax + ;xy(x1)yi)A 
y 

(B-15a) 

Likewise for t , 
y 

S(Xl + Ax,yi + Ay) = V*1*3^  + ^xy(Xl,yi)Ax + ;yy(Xl,yi)Ay  ' 
(B-15b) 

where 4   < dx and A   < dy.   Now the intersection of the t (x, y) plane with the 
x y x 

t,      = tany plane within dx, dy is a straight line.   Another similar line is 

formed by t, (x,y) in the t,       =0 plane.   These lines are determined by setting 
y ysp 

the left sides of Eq. (B-15) equal to t,      and t,     .   The point at which the 
xsp ysp 

projections of these lines cross in the x-y plane is the specular point.   It is 
found by solving Eq. (B-15) for A   and A , and the result is: 

xsp " JL xyv'y "   ysp) "   yy(Sc " Scsp/J| x,, 

ysp " J^xyvSc       xsp/ "   xx\ y 

yj 
(B-16a) 

(B-16b) 

where J = t,   t,     - £2 

'xx'yy     'xy 

ysD/j| x,,y! 

Then for a specular point to occur within the desired 

interval, the following two inequalities must hold: 

Xi < Xi + A       < Xi + dx, 1 xsp 
(B-17a) 

and 

yi < yi + \ran < y\ + dy (B-17b) 
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Substituting Eq.  (B-16) into (B-17), the following inequality pair results when 
J> 0. 

0 < u < Jdx  , (B-18a) 

and 

0 < v < Jdy   , (B-18b) 

where u, v are new variables to replace t,    - I,      and t,    - t,      , defined as 
follows: X       ySP y       ySP 

u -1 fc -1   ) -& [% - i   \ , 'xy^'y  'ysp^  yy\x  *xsp] 

and 

xy\ x " xsp] " xxI y  ysp) 

Thus for given values of I   ,£    , and L     (which themselves may range between s xx   xy *yy J      * 
± °°), the ranges of these new random variables are given by Eq. (B-ft). 

The probability, then, of a specular point within xlt xt + dx and yj, 
yt + dy for positive J is found by integrating pfc ,& .&   , ?,    ,£   \X\y\\ between 

these limits.   For dx and dy sufficiently small, the value t,   and t,   in the above 

probability density take on the values at the specular point t,      and t,     .   This 
probability is X8p ysp 

jf J ^    xx "yy *xy \ J J   *x *3T \*xsp *ysp *xx 'xy *yy   l'l)\ 

Making the change of variables to u, v we obtain 

(   Jdx    Jdy       . 

Xi,y,)dudv J . 
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Since dx and dy are small, the integral in braces can be simplified 

P+ = dx dy / // ft,   t,     - i* | pft      ,1      ,1    ,t    ,1    ; 
l^Q \ xx yy     *xy/ *\*xsp *ysp *xx *xy    yy' 

Xi,yj)d&   d?,   dt, 

Likewise the probability P   for J < 0 can be computed.   Then the total prob- 
ability of a specular point in dx dy is 

00     00       oo 

P = dxdy / /  / k   i    - t,2 |p(&     ,;     ,l   ,l   .(   ; 
oo    oo   « I » yy       xyl\ xsp *ysp   xx *xy   yy -00     «90    «00 

x,,y,)dt   dt,   dt, ltJif "xx "yy *: yy  xy 

The average number of specular points per unit area n   is the integral in the 

above equation, as one readily sees by analogy with the one-dimensional surface. 
Writing the joint probability density in the integral as the product of the joint 
density in the slopes I,   and t, , and the conditional density in the remaining 

x       y 
second derivative variables, we obtain the following result for n : 

00 OC 00 

A *\  xsp ysp] ^ J^ ^ I xx'yy   xyT\ xx *xy yy I 

; ,1     \d£ d; dt, 
xsp yspJ xx xy yy 

( B-19) 

For the same Gaussian joint probability density and correlation coeffi- 
cient model, the horizontal separation r between the two surface points £(x,y) 
and £(x',y*) is now defined as follows: 

= Si r = \'(x - x*) + (y - y*)z  . 1 

Equations (B-8) are correct here as they stand.   In addition, the following 
covariances may be derived in the same manner as Eq. (B-8). 

y     x <^-=- 
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<^>> 
12h'        0     -    2 
  =    XT       =   TT 

»4 XX 
(B-20) ! 

<^x,y)Vx,y))=^(x,y)) = ^=|^ 

All the remaining covariances between the five random variables (i.e., t, , £, , 

t,    ,i    ,£,    \ at a given surface point (x,y) which are not shown explicitly in 

Eq. ( B-8) or { B-20) are identically zero.   Note that only two of these five 
random variables are correlated, viz., L    and t    , whose correlation 

x xx       yy 
coefficient is — . 

It is now a relatively straightforward problem to reduce the integral in 
Eq. (B-19) for the Gaussian surface.   Using the above covariances, we define 
new variables w - t,   L    and v = t}  .   Then this integral, expressed in terms 

'xx'yy *xy * 
of the probability functions of w and v, become 

I - J    dw J    dv I w - v I p( w) p( v) 

0 -*> 
= J   dwp(w) J    (v - w)p(u)du 

-w o 

+ J  dw p( w) 
0 

w « 
J    (w - v)p(v)dv + j  (v - w)p(v)dv 

w 

This equation can be reduced to the following: 

I = 
'JTn* 

3ff 
/T(2x- l)»<>ft  +-lx,/!

e"Xlex/4Ko^x)dx  , 

where </>(y) is the standard error function and K (y) is the modified zero-order 

cylindrical Bessel function of the second type.   The integral above is a number 
which is evaluated easiest numerically.   The answer is 5.13011.   Then using 

V 2 s 
I - -r— 5.13 rj* in Eq. (B-19), we obtain the following result for the average 

number of specular points per unit area. 
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7.255 
n    =  expj 

A 2.2 

tan2y 

~7~ 
( B-21) 

where s2 is the mean square value of the total slope at a point on a two- 
dimensionally rough surface, defined as 

4h2 

,»■ A« +;
2\ = s2 + s2 = 2s2 =21. 

\x      y/      x      y        x     t2 

(b) Average Curvature at Specular Points 

When the scattering surface is a function of two variables, the sta- 
tionary phase principle shows that the scattered power varies inversely with 
the Gaussian curvature at the specular point.   The Gaussian curvature is 
interpreted simply as the reciprocal of product of the principal radii of curva- 
ture at the specular point.   The principal radii are the maximum and minimum 

I radii.   This is in contrast to scattering from the one-dimensional surface, where 
I the power varied inversely with the simple curvature of the surface at the 

specular point. 

From any treatment of differential geometry9 it can be shown that 
the reciprocal of the Gaussian curvature is expressed in terms of the deriva- 

f tives of £<x,y) as follows: 

14,* 
1   i     - &2 
*xx*yy     'xy 

1'2 

I The evaluation of the average value of this quantity at the specular point 
I follows the same technique as we used for the one-dimensional surface, and 

much of the detail will not be retraced again.   We know that the values of the 
slope at the specular point are £       = tan y and £       = 0 ( Figure B-2).   The 

j denominator of the above equation then contains the random variables which 
| must be averaged.   As before, we average the quantity in the denominator 
! separately rather than its reciprocal; the singularity when the denominator goes 
I to zero is avoided for the same reason here as previously.   In averaging the 
i denominator, we use the conditional probabilitv density function in C    ,1    , 
% XX     XV 

£    , given in t, Js   because of our prior knowledge of these surface slopes at 
yy x  y 

the specular point.   The average then becomes 
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<K,^I> = 
(l*t xsp + 4: ysp/ 

It   C    - t2 
rxx yy       xy 

or 

< 1-^1^2 !> ■ 
sec4y 

f/f ft t   -c2 |p/t  ,i &  It,   ,;   W d; d; J J J^ |xx'yy      xyl  y xx 'xy'yyrxsp 'ysp) 'xx 'yy 'xy 

(B-22) 

In particular, the denominator will be evaluated for the Gaussian surface 
model employed previously.   The above denominator is the same as the integral 

n 
of Eq.  (B-19).   The solution obtained there represented as I, was — 5.13TJ2. 

«iff 

Hence the average curvature for the Gaussian model becomes 

<lfi*|l> - 0.327 £ sec v 
2        2 

(B-23) 

(c) Average Scattering Cross Sections per Unit Area 

In the seme manner, let us substitute Eq. (B-19), giving the 
average number of specular points per unit area, and Eq. (B-22), for the 
average Gaussian curvature at a specular point, into Eq. (B-2) to give the 
general expression for the average scattering cross section per unit surface 
area.   Again the integrals cancel, simplifying the result. 

cr°    * ff sec4YP(tanY, 0) [R^U) |J (B-24) 

where pfc ,1» \ is the joint probability density function for the surface slopes, 

(  and i .   The total slope of the surface at the specular point, tan y, is given x y 
in Eq. (B-27), and the remaining terminology is defined in the introduction. 

For the model having Gaussian surface statistics, the bistatic and back- 
scattering cross sections respectively become: 
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tan2y 

'l'*!1'   S!   Pi,«"!'- 
tan20 

sec4 0 ~ 

<£, = °L =  ~e      8       lR(°) I2  • (B"25b) w       tin j ' ' 
s' 

where again R( 0) is the Fresnel reflection coefficient for normal incidence. 
The latter equation is identical to that obtained by Hagfors1 by the autocorrela- 
tion approach, and Muhleman4 by the ray optics technique, as corrected by 
Hagfors.'  Equation (B-25a) is identical to the result derived by Semenov2 and 
later by Stogryn.3 

4.    Conclusions 

We have obtained explicit expressions for the average number of 
specular points per unit surface area and the average curvature at a specular 
point.   The role of these quantities in the scattering process if readily under- 
stood from basic geometrical optics (or stationary phase) considerations.   For 
a two-dimensionally rough surface, for example, the scatteririg cross section 
for one specular point is it times the product of the principal radii of curvature. 
For a very rough surface where the power from neighboring specular points 
adds incoherently, one must multiply by the average number of such specular 

j points.   Furthermore, one must multiply by the surface reflection coefficients 
j' in order to account properly for polarization.   These reflection coefficients are 
| derived here for the vertical and horizontal states. 

I 
I From examination of the Gaussian model {which several investigators10 

| have found typifies the sea surface fairly well) we see that the dominant factor 
in the scattering cross section for relatively small rms surface slopes is the 

I number of specular points.   This quantity varies directly with the surface slope 
probability density function, which decreases quite rapidly at scattering angles 

I where the slope of the specular points must be considerably different from zero. 
On the other hand, the average radii of curvature increase with increasing slope 
at the specular point, but not nearly enough to offset the decrease in the number 
of specular points. 

The two pieces of surface statistical information obtained here, and 
their simple relationship to a third quantity, the scattering cross section, 
suggest possible uses in determination of surface properties of an unknown or 
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inaccessible surface, i.e., in the inverse scattering problem.   For instance, 
the number of specular points on a surface might be counted from optical photo- 
graphs or by scanning with a collimated laser or radar beam.   The intensity of 
the return from each of these specular points permits one to estimate the product 
of the principal radii of curvature.   If one combines or integrates these separate 
specular point brightnesses, he obtains the scattering cross section of the entire 
surface.   Measurement of any two of thes« quantities permits determination of 
the third.   Also, one can obtain the surface slope probability density function. 
If the functional form of the distribution is not too different from Gaussian so 
that one can use the model examined in this paper, one can obtain estimates of 
the rms roughness height and correlation length from a knowledge of two of the 
three quantities.   Normally, these two parameters of a rough surface cannot be 
determined from the scattering cross section alone, since the only surface 
parameter appearing explicitly in the model is the surface slope, as seen from 
Eq. (B-25). 

5.    Appendix 

First, we shall determine the pertinent angles and slopes associated 
with the specular points.   The slopes are determined by applying the stationary 

ik q . r 
phase principle to the exponential e , of the physical optics integrand. 
Here q = k\ - £  ( Figure B-l), and r = xx + yy + £(x,y) z is the distance from 

1       s 

the origin to a point on the surface.   The stationary phase point is defined as 
the point at which the gradient vector in the x, y-directions of the argument of 
the above exponential vanishes.   Equating the two components of this vector to 
zero, we obtain the surface slopes at the specular point as 

•I 
% 

I 

xsp 

Then the normal to the surface at the specular point is given by 

-t      x - t      y + z xsp yspJ 

sp 

fi 
2     + c»     + l 
xsp      ysp 1 
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/sin 0   cos (p   - sin 0 \x + sin 0   sin <p y + ( cos 0. + cos 0 \. 
\ss i/ s s      y x sf 

*/£ ./l - sin 0   sin 0   cos <p   + cos 0   cos 0 
V OSS OS 

(B-26) 

The cosine of the angle of incidence i at the specular point is -R. ■  n 

= k   •  n   ; after simplification, it is given in Eq. (B-3).   The angle between 

the above normal and the vertical y is determined from cos y = z •  n   .   Its 
sp 

tangent is also the total slope of the surface at specular point, and is readily 
determined from Eq. (B-26). 

tany = 
sin2 0. - 2 sin 0, sin 0   cos <p   + sin2 0 

1 i s s I 
cos 9. + cos 0g 

(B-27) 

Now that we know the angles associated with the specular points, we can 
determine the manner in which these points reflect the incident polarized wave. 
Vertical and horizontal polarization states here refer to the incident and 
scattered E-field vectors along the 0., 0   directions and (p., <p   directions 

is i      8 
respectively (Figure B-l).   The reflection coefficients between the scattered 
and incident v and h states are the same as those for an infinite plane tangent to 
the surface at the specular point and having slopes 4      and t,     .   This problem 

has been solved by Mitzner. u Briefly, one resolves the incident E-field into 
components along two vectors, one normal to the local plane of incidence, i. e., 

1    t u » _— R   x n 
sin t   i       sp 

and one in the plane of incidence but perpendicular to k , i. e., 

a      «      * 

a ■ k   x u  . 

Likewise, we employ a unit vector perpendicular to k , i.e., 
s 

»     *      * 
ß » k   x u   . 

The components of the scattered E-fieldsjresolved along G and ß are then 
related to the components of the incident E-fields resolved along u and n- by 
the well known Presnel reflection coefficients: 
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R(l(0 =   r 
/e p 

N  r r 
€   cos t -   I € u   - sin2 I 

e   cos i +   Ie ß   - sin2 L 
r v  r r 

and 

/7/u  - 
v  r r 

/u   cos t +   /e p   - sin2 i 
r v  r r 

M   cos L - J e ß   - sin2 i 
R,(0  =~ V   r r —. (B-28) 

If the incident E-field is horizontally polarized, then the reflection 
coefficients we seek are defined as follows: 

9   • E 

hh l 
Eh 

and 

<p    •  E 
R.=   8 

vh i 
Eh 

—r 
where E   is the total E-field reflected from the specular points as determined 
by the technique in the preceding paragraph.   An analogous definition gives 
R    and R    when the incident E-field is vertically polarized.   After performing 

the required algebra, we obtain 

sin 8. sin 0   sin2 <f>   R. (t) +a2asR,U) 
R     - i        s s    11 1 

nh .    .   9 5 
4 sin i cos* i 

a2Sin0R,.(O  - a3 sin fl.R.U) 
R     = sin <p    — L^L_   , ( B-29a) 

V" 8 A       ,    2 i 4 sin' i cos' i 
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R,    = sin a 
hv s 

a2Sin0R,(t)  - a3 sin 0. R,.( L) 
s J. ill 

4 sin2 t cos2 L 

R     = w 

sin 0. sin 0   sinz<pR,(i)  +a2a3R,,(t) 

4 sin2 i cos2 i 
(B-29b) 

where 

a» = cos Ö. sin 0   + sin 0. cos 0   cos <p 
is 1 s s 

and 

a3 = sin 0. cos 0   + cos 0. sin 0   cos <p 0 IS 1 s s 
(B-30) 

For backscattering, 0. = 0   and <p   = 0.   These reflection coefficients are 
is s 

simplified by taking the limit of numerator and denominator.   The results are: 

Rhh = Rw - R||(0)'   -Rl(0); Rvh " \v~ °- (ß-31> 
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